0
SPECIAL SECTION: SIMULATION AND EXPERIMENTAL STUDIES AND APPLICATIONS OF CARBON NANOTUBES AND GRAPHENES IN ENGINEERING AND MEDICINE: Guest Editorial

Buckling Instability of Carbon Nanotube Atomic Force Microscope Probe Clamped in an Elastic Medium

[+] Author and Article Information
Jin-Xing Shi

Interdisciplinary Graduate
School of Science and Technology,
Shinshu University,
3-15-1 Tokida,
Ueda-shi, 386-8567, Japan

Toshiaki Natsuki

e-mail: natsuki@shinshu-u.ac.jp

Qing-Qing Ni

Faculty of Textile Science and Technology,
Shinshu University,
3-15-1 Tokida,
Ueda-shi, 386-8567, Japan

1Corresponding author.

Manuscript received April 1, 2012; final manuscript received July 11, 2012; published online September 24, 2012. Assoc. Editor: Quan Wang.

J. Nanotechnol. Eng. Med 3(2), 020903 (Sep 24, 2012) (5 pages) doi:10.1115/1.4007215 History: Received April 01, 2012; Revised July 11, 2012

Carbon nanotubes (CNTs) can be used as atomic force microscope (AFM) probes due to their robust mechanical properties, high aspect ratio and small diameter. In this study, a model of CNTs clamped in an elastic medium is proposed as CNT AFM probes. The buckling instability of the CNT probe clamped in elastic medium is analyzed based on the nonlocal Euler–Bernoulli beam model and the Whitney–Riley model. The clamped length of CNTs, and the stiffness of elastic medium affect largely on the stability of CNT AFM probe, especially at high buckling mode. The result shows that the buckling stability of the CNT AFM probe can be largely enhanced by increasing the stiffness of elastic medium. Moreover, the nonlocal effects of buckling instability are investigated and found to be lager for high buckling mode. The theoretical investigation on the buckling stability would give a useful reference for designing CNT as AFM probes.

FIGURES IN THIS ARTICLE
<>
Copyright © 2012 by ASME
Your Session has timed out. Please sign back in to continue.

References

Iijima, S., 1991, “Helical Microtubules of Graphitic Carbon,” Nature, 354, pp. 56–58. [CrossRef]
Liew, K. M., Wong, C. H., He, X. Q., Tan, M. J., and Meguid, S. A., 2004, “Nanomechanics of Single and Multiwalled Carbon Nanotubes,” Phys. Rev. B, 69, p. 115429. [CrossRef]
Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F., and Thio, T., 1996, “Electrical Conductivity of Individual Carbon Nanotubes,” Nature, 382, pp. 54–56. [CrossRef]
Wang, H., Feng, J. Y., Hu, X. J., and Ng, K. M., 2010, “Reducing Thermal Contact Resistance Using a Bilayer Aligned CNT Thermal Interface Material,” Chem. Eng. Sci., 65(3), pp. 1101–1108. [CrossRef]
Rossi, M., and Meo, M., 2009, “On the Estimation of Mechanical Properties of Single-Walled Carbon Nanotubes by Using a Molecular-Mechanics Based FE Approach,” Compos. Sci. Technol., 69(9), pp. 1394–1398. [CrossRef]
Cola, B. A., Xu, J., and Fisher, T. S., 2009, “Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Interfaces,” Int. J. Heat Mass Transfer, 52(15–16), pp. 3490–3503. [CrossRef]
Li, Q. W., Zhang, J., Yan, H., He, M. S., and Liu, Z. F., 2004, “Thionine-Mediated Chemistry of Carbon Nanotubes,” Carbon, 42(2), pp. 287–291. [CrossRef]
Fan, S. S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., and Dai, H. J., 1999, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, 283, pp. 512–514. [CrossRef] [PubMed]
Mamalis, A. G., Vogtländer, L. O. G., and Markopoulos, A., 2004, “Nanotechnology and Nanostructured Materials: Trends in Carbon Nanotubes,” Precis. Eng., 28(1), pp. 16–30. [CrossRef]
Valentini, F., Orlanducci, S., Terranova, M. L., Amine, A., and Palleschi, G., 2004, “Carbon Nanotubes as Electrode Materials for the Assembling of New Electrochemical Biosensors,” Sens. Actuators B, 100(1–2), pp. 117–125. [CrossRef]
Martinez, J., Yuzvinsky, T. D., Fennimore, A. M., Zettl, A., Garcia, R., and Bustamante, C., 2005, “Length Control and Sharpening of Atomic Force Microscope Carbon Nanotube Tips Assisted by an Electron Beam,” Nanotechnology, 16, pp. 2493–2496. [CrossRef]
Hafner, J. H., Cheung, C. L., Oosterkamp, T. H., and Lieber, C. M., 2001, “High-Yield Assembly of Individual Single-Walled Carbon Nanotube Tips for Scanning Probe Microscopies,” J. Phys. Chem. B, 105(4), pp. 743–746. [CrossRef]
Druzhinina, T. S., Hoeppener, S., and Schubert, U. S., 2010, “Microwave-Assisted Fabrication of Carbon Nanotube AFM Tips,” Nano Lett., 10, pp. 4009–4012. [CrossRef] [PubMed]
Wilson, N. R., and Macpherson, J. V., 2009, “Carbon Nanotube Tips for Atomic Force Microscopy,” Nat. Nanotechnol., 4, pp. 483–491. [CrossRef] [PubMed]
Lamprecht, C., Danzberger, J., Lukanov, P., Tilmaciu, C. M., Galibert, A. M., Soula, B., Flahaut, E., Gruber, H. J., Hinterdorfer, P., Ebner, A., and Kienberger, F., 2009, “AFM Imaging of Functionalized Double-Walled Carbon Nanotubes,” Ultramicroscopy, 109(8), pp. 899–906. [CrossRef] [PubMed]
Strus, M. C., Raman, A., Han, C. S., and Nguyen, C. V., 2005, “Imaging Artefacts in Atomic Force Microscopy With Carbon Nanotube Tips,” Nanotechnology, 16, pp. 2482–2492. [CrossRef]
Choi, N., Uchihashi, T., Nishijima, H., Ishida, T., Mizutani, W., Akita, S., Nakayama, Y., Ishikawa, M., and Tokumoto, H., 2000, “Atomic Force Microscopy of Single-Walled Carbon Nanotubes Using Carbon Nanotube Tip,” Jpn. J. Appl. Phys., 39, pp. 3707–3710. [CrossRef]
Chen, L., Cheung, C. L., Ashby, P. D., and Lieber, C. M., 2004, “Single-Walled Carbon Nanotube AFM Probes: Optimal Imaging Resolution of Nanoclusters and Biomolecules in Ambient and Fluid Environments,” Nano Lett., 4(9), pp. 1725–1731. [CrossRef]
Wang, Q., Duan, W. H., Liew, K. M., and He, X. Q., 2007, “Inelastic Buckling of Carbon Nanotubes,” Appl. Phys. Lett., 90, p. 033110. [CrossRef]
Duan, W. H., Wang, Q., Wang, Q., and Liew, K. M., 2010, “Modeling the Instability of Carbon Nanotubes: From Continuum Mechanics to Molecular Dynamics,” ASME J. Nanotechnol. Eng. Med., 1, p. 011001. [CrossRef]
Arash, B., Wang, Q., and Varadan, V. K., 2011, “Carbon Nanotube-Based Sensors for Detection of Gas Atoms,” ASME J. Nanotechnol. Eng. Med., 2, p. 021010. [CrossRef]
Ranjbartoreh, A. R., and Wang, G., 2011, “Effect of Topological Defects on Buckling Behavior of Single-Walled Carbon Nanotube,” Nanoscale Res. Lett., 6, p. 28. [CrossRef]
Natsuki, T., Tantrakarn, K., and Endo, M., 2004, “Prediction of Elastic Properties for Single-Walled Carbon Nanotubes,” Carbon, 42(1), pp. 39–45. [CrossRef]
Lei, X. W., Natsuki, T., Shi, J. X., and Ni, Q. Q., 2011, “Analysis of Carbon Nanotubes on the Mechanical Properties at Atomic Scale,” J. Nanomater., 2011, p. 805313. [CrossRef]
Joshi, A. Y., Bhatnagar, A., Harsha, S. P., and Sharma, S. C., 2010, “Vibration Response Analysis of Doubly Clamped Single Walled Wavy Carbon Nanotube Based Nanomechanical Sensors,” ASME J. Nanotechnol. Eng. Med., 1, p. 031004. [CrossRef]
Joshi, A. Y., Sharma, S. C., and Harsha, S. P., 2010, “Dynamic Analysis of a Clamped Wavy Single Walled Carbon Nanotube Based Nanomechanical Sensors,” ASME J. Nanotechnol. Eng. Med., 1, p. 031007. [CrossRef]
Natsuki, T., Lei, X. W., Ni, Q. Q., and Endo, M., 2010, “Free Vibration Characteristics of Double-Walled Carbon Nanotubes Embedded in an Elastic Medium,” Phys. Lett. A, 374, pp. 2670–2674. [CrossRef]
Natsuki, T., Lei, X. W., Ni, Q. Q., and Endo, M., 2010, “Vibrational Analysis of Double-Walled Carbon Nanotubes With Inner and Outer Nanotubes of Different Lengths,” Phys. Lett. A, 374, pp. 4684–4689. [CrossRef]
Natsuki, T., Ni, Q. Q., and Endo, M., 2011, “Stability Analysis of Double-Walled Carbon Nanotubes as AFM Probes Based on a Continuum Model,” Carbon, 49, pp. 2532–2537. [CrossRef]
Lei, X. W., Natsuki, T., Shi, J. X., and Ni, Q. Q., 2011, “Radial Breathing Vibration of Double-Walled Carbon Nanotubes Subjected to Pressure,” Phys. Lett. A, 375, pp. 2416–2421. [CrossRef]
Lei, X. W., Natsuki, T., Shi, J. X., and Ni, Q. Q., 2011, “Radial Breathing Mode of Carbon Nanotubes Subjected to Axial Pressure,” Nanoscale Res. Lett., 6, p. 492. [CrossRef] [PubMed]
Elishakoff, I., Versaci, C., Maugeri, N., and Muscolino, G., 2011, “Clamped-Free Single-Walled Carbon Nanotube-Based Mass Sensor Treated as Bernoulli–Euler Beam,” ASME J. Nanotechnol. Eng. Med., 2, p. 021001. [CrossRef]
Yap, H. W., Lakes, R. S., and Carpick, R. W., 2007, “Mechanical Instabilities of Individual Multiwalled Carbon Nanotubes Under Cyclic Axial Compression,” Nano Lett., 7(5), pp. 1149–1154. [CrossRef] [PubMed]
Wang, Q., and Varadan, V. K., 2005, “Stability Analysis of Carbon Nanotube Probes for an Atomic Force Microscope via a Continuum Model,” Smart Mater. Struct., 14, pp. 1196–1203. [CrossRef]
Wang, Q., 2005, “Wave Propagation in Carbon Nanotubes via Nonlocal Continuum Mechanics,” J. Appl. Phys., 98, p. 124301. [CrossRef]
Li, R., and Kardomateas, G. A., 2007, “Thermal Buckling of Multi-Walled Carbon Nanotubes by Nonlocal Elasticity,” ASME J. Appl. Mech., 74, pp. 399–405. [CrossRef]
Hu, Y. G., Liew, K. M., Wang, Q., He, X. Q., and Yakobson, B. I., 2008, “Nonlocal Shell Model for Elastic Wave Propagation in Single- and Double-Walled Carbon Nanotubes,” J. Mech. Phys. Solids., 56, pp. 3475–3485. [CrossRef]
Pradhan, S. C., and Murmu, T., 2009, “Small-Scale Effect on Vibration Analysis of Single-Walled Carbon Nanotubes Embedded in an Elastic Medium Using Nonlocal Elasticity Theory,” J. Appl. Phys., 105, p. 124306. [CrossRef]
Shen, Z. B., Deng, B., Li, X. F., and Tang, G. J., 2011, “Vibration of Double-Walled Sensor via Nonlocal Timoshenko Beam Theory,” J. Nanotechnol. Eng. Med., 2, p. 031003. [CrossRef]
Lei, X. W., Natsuki, T., Shi, J. X., and Ni, Q. Q., 2012, “Surface Effects on the Vibrational Frequency of Double-Walled Carbon Nanotubes Using the Nonlocal Timoshenko Beam Model,” Composites, Part B, 43, pp. 64–69. [CrossRef]
Ansari, R., Sahmani, S., and Arash, B., 2010, “Nonlocal Plate Model for Free Vibrations of Single-Layered Graphene Sheets,” Phys. Lett. A, 375, pp. 53–62. [CrossRef]
Pradhan, S. C., 2009, “Buckling of Single Layer Graphene Sheet Based on Nonlocal Elasticity and Higher Order Shear Deformation Theory,” Phys. Lett. A, 373, pp. 4182–4188. [CrossRef]
Shi, J. X., Ni, Q. Q., Lei, X. W., and Natsuki, T., 2011, “Nonlocal Elasticity Theory for the Buckling of Double-Layer Graphene Nanoribbons Based on a Continuum Model,” Comput. Mater. Sci., 50, pp. 3085–3090. [CrossRef]
Shi, J. X., Ni, Q. Q., Lei, X. W., and Natsuki, T., 2011, “Wave Propagation in Embedded Double-Layer Graphene Nanoribbons as Electromechanical Oscillators,” J. Appl. Phys., 110, p. 084321. [CrossRef]
Arash, B., and Wang, Q., 2011, “Vibration of Single- and Double-Layered Graphene Sheets,” ASME J. Nanotechnol. Eng. Med., 2, p. 011012. [CrossRef]
Shi, J. X., Ni, Q. Q., Lei, X. W., and Natsuki, T., 2012, “Nonlocal Vibration of Embedded Double-Layer Graphene Nanoribbons in In-Phase and Anti-Phase Modes,” Physica E, 44, pp. 1136–1141. [CrossRef]
Arash, B., and Wang, Q., 2012, “A Review on the Application of Nonlocal Elastic Models in Modeling of Carbon Nanotubes and Graphenes,” Comput. Mater. Sci., 51, pp. 303–313. [CrossRef]
Ru.C. Q., 2001, “Axially Compressed Buckling of a Doublewalled Carbon Nanotube Embedded in an Elastic Medium,” J. Mech. Phys. Solids, 49, pp. 1265–1279. [CrossRef]
Murmu, T., and Pradhan, S. C., 2009, “Buckling Analysis of a Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based on Nonlocal Elasticity and Timoshenko Beam Theory and Using DQM,” Physica E, 41, pp. 1232–1239. [CrossRef]
Patil, A., Sippel, J., Martin, G. W., and Rinzler, A. G., 2004, “Enhanced Functionality of Nanotube Atomic Force Microscopy Tips by Polymer Coating,” Nano Lett., 4(2), pp. 303–308. [CrossRef]
Wang, Q., and Wang, C. M., 2007, “The Constitutive Relation and Small Scale Parameter of Nonlocal Continuum Mechanics for Modelling Carbon Nanotubes,” Nanotechnology, 18, p. 075702. [CrossRef] [PubMed]
Yang, H. K., and Wang, X., 2007, “Torsional Buckling of Multi-Wall Carbon Nanotubes Embedded in an Elastic Medium,” Compos. Struct., 77, pp. 182–192. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) A proposed SWCNT AFM probe clamped in an elastic medium and (b) the analytical model for the clamped SWCNT

Grahic Jump Location
Fig. 2

The first four buckling mode shapes of clamped SWCNT AFM probes, L2/L1 = 2

Grahic Jump Location
Fig. 3

Relationship between the critical buckling stress and buckling modes for clamped SWCNTs with different length ratio L2/L1, e0a = 0 nm

Grahic Jump Location
Fig. 4

Relationship between the critical buckling stress and buckling modes for SWCNTs clamped in different mediums, e0a = 0 nm and L2/L1 = 2

Grahic Jump Location
Fig. 5

Effects of nonlocal scale parameters on the buckling stability of clamped SWCNTs, L2/L1 = 2

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In