0
Technical Briefs

Nanotechnology Applications in Orthopedic Surgery

[+] Author and Article Information
Sara A. Brenner

UAlbany College of Nanoscale Science and Engineering,
Nanobioscience Constellation,
257 Fuller Road, NanoFab East, Room 4406,
Albany, NY 12203
e-mail: sbrenner@uamail.albany.edu

John F. Ling

Indiana University School of Medicine, MS1,
340 West 10th Street, Suite 6200,
Indianapolis, IN 46202-3082
e-mail: jfling@indiana.edu

Manuscript received June 30, 2011; final manuscript received April 6, 2012; published online September 24, 2012. Assoc. Editor: Quan Wang.

J. Nanotechnol. Eng. Med 3(2), 024501 (Sep 24, 2012) (5 pages) doi:10.1115/1.4006923 History: Received June 30, 2011; Revised April 06, 2012

Nanotechnology applications in medicine are poised to revolutionize the prevention, diagnosis, and treatment of disease. Researchers, scientists, and physicians across various disciplines and specialties are working to develop innovative clinical tools that incorporate materials, devices, and systems engineered at the nanoscale. Surgical specialties, such as orthopedic surgery, are among those developing nanotechnology applications for clinical use. Orthopedic surgery addresses disorders of the musculoskeletal system including repair by both surgical and nonsurgical means of tendons, ligaments, muscles, bones, and nerves injured due to trauma or disease. Medical interventions targeting orthopedic conditions are becoming increasingly important given current epidemiologic trends in these conditions. The purpose of this article is to highlight current and emerging applications of nanotechnology in orthopedic surgery. Selected, clinically relevant examples are described in the categories of drugs and drug delivery, imaging, sensors, biomaterials, diagnostics, and novel therapeutics. Several promising nanomedicine applications that target orthopedic conditions are in various stages of development from basic scientific research to clinical trials to product development and commercialization. Nanotechnology applications aimed at the prevention, diagnosis, and treatment of orthopedic conditions hold great promise for improving the standard of care in orthopedic surgery in the 21st century.

Copyright © 2012 by ASME
Your Session has timed out. Please sign back in to continue.

References

Rush University Medical Center, Chicago, Illinois, 2011, “Common Orthopaedic Disorders,” last accessed June 24, 2011, http://www.rush.edu/rumc/page-1098987333176.html
Administration on Aging, 2011, “Projected Future Growth of the Older Population,” last accessed June 24, 2011, http://www.aoa.gov/AoARoot/Aging_Statistics/future_growth/future_growth.aspx
Jacobs, J. J., Andersson, G. B. J., Dormans, J. P., Furman, M. B., Lane, N., Puzas, J. E., St. Clair, E. W., 2008, “The Burden of Musculoskeletal Disease in the United States,” last accessed June 23, 2011, http://www.boneandjointburden.org/about/index.htm
Centers for Disease Control and Prevention (CDC), 2010, “Prevalence of Doctor-Diagnosed Arthritis and Arthritis-Attributable Activity Limitation—United States, 2007–2009,” MMWR Morb. Mortal. Wkly Rep., 59(39), pp.1261–1265. [PubMed]
Centers for Disease Control and Prevention (CDC), 2010, “Arthritis-Related Statistics,” last accessed June 24, 2011, http://www.cdc.gov/arthritis/data_statistics/arthritis_related_stats.htm
Centers for Disease Control and Prevention (CDC), 2007, “National and State Medical Expenditures and Lost Earnings Attributable to Arthritis and Other Rheumatic Conditions—United States, 2003,” MMWR Morb. Mortal. Wkly Rep. (MMWR), 56(1), pp.4–7.
Chen, J., Yu, Q., Wu, B., Lin, Z., Pavlos, N. J., Xu, J., Ouyang, H., Wang, A., and Zheng, M. H., 2011, “Autologous Tenocyte Therapy for Experimental Achilles Tendinopathy in a Rabbit Model,” Tissue Eng. Part A, 17, pp.2037–2048. [CrossRef] [PubMed]
Lewis, N. T., Hussain, M. A., and Mao, J. J., 2008, “Investigation of Nano-Mechanical Properties of Annulus Fibrosus Using Atomic Force Microscopy,” Micron, 39(7), pp.1008–1019. [CrossRef] [PubMed]
Smith, G. C., Chamberlain, L., Faxius, L., Johnston, G. W., Jin, S., and Bjursten, L. M., 2011, “Soft Tissue Response to Titanium Dioxide Nanotube Modified Implants,” Acta Biomater., 7, pp.3209–3215. [CrossRef] [PubMed]
Reis, A. V., Guilherme, M. R., Mattoso, L. H., Rubira, A. F., Tambourgi, E. B., and Muniz, E. C., 2009, “Nanometer- and Submicrometer-Sized Hollow Spheres of Chondroitin Sulfate as a Potential Formulation Strategy for Anti-Inflammatory Encapsulation,” Pharm. Res., 26(2), pp.438–444. [CrossRef] [PubMed]
Hauge Bunger, M., Foss, M., Erlacher, K., Bruun Hovgaard, M., Chevallier, J., Langdahl, B., Bünger, C., Birkedal, H., Besenbacher, F., and Skov Pedersen, J., 2006, “Nanostructure of the Neurocentral Growth Plate: Insight From Scanning Small Angle X-Ray Scattering, Atomic Force Microscopy and Scanning Electron Microscopy,” Bone, 39(3), pp.530–541. [CrossRef] [PubMed]
Liu, H., and Webster, T. J., 2010, “Ceramic/Polymer Nanocomposites With Tunable Drug Delivery Capability at Specific Disease Sites,” J. Biomed. Mater. Res., 93A(3), pp.1180–1192. [CrossRef]
Chung, K. K., Schumacher, J. F., Sampson, E. M., Burne, R. A., Antonelli, P. J., and Brennan, A. B., 2007, “Impact of Engineered Surface Microtopography on Biofilm Formation of Staphylococcus Aureus,” Biointerphases, 2(2), pp.89–94. [CrossRef] [PubMed]
Zhu, W., Xiao, J., Wang, D., Liu, J., Xiong, J., Liu, L., Zhang, X., and Zeng, Y., 2009, “Experimental Study of Nano-HA Artificial Bone With Different Pore Sizes for Repairing the Radial Defect,” Int. Orthop., 33(2), pp.567–571. [CrossRef] [PubMed]
Susa, M., Iyer, A. K., Ryu, K., Hornicek, F. J., Mankin, H., Amiji, M. M., and Duan, Z., 2009, “Doxorubicin Loaded Polymeric Nanoparticulate Delivery System to Overcome Drug Resistance in Osteosarcoma,” BMC Cancer, 9, p.399. [CrossRef] [PubMed]
Tyrrell, J., 2008, “Nanotubes on the Look Out for New Bone,” nanotechweb.org, last accessed June 24, 2011, http://nanotechweb.org/cws/article/tech/34698
Wu, X., Li, J., Wang, L., Huang, D., Zuo, Y., and Li, Y., 2010, “The Release Properties of Silver Ions From Ag-nHA/TiO2/PA66 Antimicrobial Composite Scaffolds,” Biomed. Mater., 5(4), p. 044105. [CrossRef] [PubMed]
Liu, H., Zhang, L., Shi, P., Zou, Q., Zuo, Y., and Li, Y., 2010, “Hydroxyapatite/Polyurethane Scaffold Incorporated With Drug-Loaded Ethyl Cellulose Microspheres for Bone Regeneration,” J. Biomed. Mater. Res., Part B: Appl. Biomater., 95(1), pp.36–46. [CrossRef]
Ma, T., Shang, B. C., Tang, H., Zhou, T. H., Xu, G. L., Li, H. L., Chen, Q. H., Xu, Y. Q., 2012, “Nano-Hydroxyapatite/Chitosan/Konjac Glucomannan Scaffolds Loaded With Cationic Liposomal Vancomycin: Preparation, In Vitro Release and Activity Against Staphylococcus Aureus Biofilms,” J. Biomater. Sci. Polym. Ed., 22(12), pp.1669–1681. [CrossRef]
Wadagaki, R., Mizuno, D., Yamawaki-Ogata, A., Satake, M., Kaneko, H., Hagiwara, S., Yamamoto, N., Narita, Y., Hibi, H., and Ueda, M., 2011, “Osteogenic Induction of Bone Marrow-Derived Stromal Cells on Simvastatin-Releasing, Biodegradable, Nano- to Microscale Fiber Scaffolds,” Ann. Biomed. Eng., 39(7), pp.1872–1881. [CrossRef] [PubMed]
Tamm, I., Dorken, B., and Hartmann, G., 2001, “Antisense Therapy in Oncology: New Hope for an Old Idea?,” Lancet, 358(9280), pp.489–497. [CrossRef] [PubMed]
Elazar, V., Adwan, H., Bauerle, T., Rohekar, K., Golomb, G., Berger, M. R., 2010, “Sustained Delivery and Efficacy of Polymeric Nanoparticles Containing Osteopontin and Bone Sialoprotein Antisenses in Rats With Breast Cancer Bone Metastasis,” Int. J. Cancer, 126(7), pp.1749–1760. [CrossRef] [PubMed]
Nanoco Group Ltd., 2011, “Quantum Dots—Background Briefing,” last accessed June 24, 2011, http://www.nanocotechnologies.com/content/AboutUs/AboutQuantumDots.aspx
So, M. K., Xu, C., Loening, A. M., Gambhir, S. S., and Rao, J., 2006, “Self-Illuminating Quantum Dot Conjugates for In Vivo Imaging,” Nat. Biotechnol., 24(3), pp.339–343. [CrossRef] [PubMed]
Xing, Y., So, M. K., Koh, A. L., Sinclair, R., and Rao, J., 2008, “Improved QD-BRET Conjugates for Detection and Imaging,” Biochem. Biophys. Res. Commun., 372(3), pp.388–394. [CrossRef] [PubMed]
Smith, A. M., Mancini, M. C., and Nie, S., 2009, “Bioimaging: Second Window for In Vivo Imaging, Nat. Nanotechnol., 4(11), pp.710–711. [CrossRef] [PubMed]
Dierolf, M., Menzel, A., Thibault, P., Schneider, P., Kewish, C. M., Wepf, R., Bunk, O., and Pfeiffer, F., 2010, “Ptychographic X-ray Computed Tomography at the Nanoscale,” Nature, 467(7314), pp.436–439. [CrossRef] [PubMed]
Sykova, E., and Jendelova, P., 2007, “In Vivo Tracking of Stem Cells in Brain and Spinal Cord Injury,” Prog. Brain Res., 161, pp.367–383. [CrossRef] [PubMed]
Alpuim, P., Filonovich, S. A., Costa, C. M., Rocha, P. F., Vasilevskiy, M. I., Lanceros-Mendez, S., Frias, C., Marques, A. T., Soares, R., and Costa, C., 2008, “Fabrication of a Strain Sensor for Bone Implant Failure Detection Based on Piezoresistive Doped Nanocrystalline Silicon,” J. Non Cryst. Solids, 354(19–25), pp.2585–2589. [CrossRef]
Liu, Y., Chakrabartty, S., Gkinosatis, D. S., Mohanty, A. K., and Lajnef, N., 2007, “Multi-Walled Carbon Nanotubes/Poly(L-Lactide) Nanocomposite Strain Sensor for Biomechanical Implants,” Biomedical Circuits and Systems Conference (BIOCAS)/IEEE, Nov.27–30 , pp.119–122.
Sirivisoot, S., and Webster, T. J., 2008, “Multiwalled Carbon Nanotubes Enhance Electrochemical Properties of Titanium to Determine In Situ Bone Formation,” Nanotechnology, 9(29), p. 295101. [CrossRef]
Lajnef, N., Elvin, N. G., and Chakrabartty, S., 2008, “A Piezo-Powered Floating-Gate Sensor Array for Long-Term Fatigue Monitoring in Biomechanical Implants,” IEEE Trans. Biomed. Circuits Syst., 2(3), pp.164–172. [CrossRef]
Nasatzky, E., Gultchin, J., and Schwartz, Z., 2003, “The Role of Surface Roughness in Promoting Osteointegration,” Refuat Hapeh Vehashinayim, 20(3), pp.8–19, 98. Available at http://www.ncbi.nlm.nih.gov/pubmed/14515625 [PubMed]
Wilkinson, A., Hewitt, R. N., McNamara, L. E., McCloy, D., Dominic Meek, R. M., and Dalby, M. J., 2011, “Biomimetic Microtopography to Enhance Osteogenesis In Vitro,” Acta Biomater, 7(7), pp.2919–2925. [CrossRef] [PubMed]
Dalby, M. J., McCloy, D., Robertson, M., Agheli, H., Sutherland, D., Affrossman, S., and Oreffo, R. O. C., 2006, “Osteoprogenitor Response to Semi-Ordered and Random Nanotopographies,” Biomaterials, 27(15), pp.2980–2987. [CrossRef] [PubMed]
Yao, C., and Webster, T. J., 2006, “Anodization: A Promising Nano-Modification Technique of Titanium Implants for Orthopedic Applications,” J. Nanosci. Nanotechnol., 6, pp.2682–2692. [CrossRef] [PubMed]
Kutsuna, T., Sato, M., Ishihara, M., Furukawa, K. S., Nagai, T., Kikuchi, M., Ushida, T., and Mochida, J., 2010, “Noninvasive Evaluation of Tissue-Engineered Cartilage With Time-Resolved Laser-Induced Fluorescence Spectroscopy,” Tissue Eng. Part C Methods, 16(3), pp.365–373. [CrossRef] [PubMed]
Reilly, G. C., and Currey, J. D., 1999, “The Development of Microcracking and Failure in Bone Depends on the Loading Mode to Which It Is Adapted,” J. Exp. Biol., 202(Pt 5), pp.543–552. Available at http://jeb.biologists.org/content/202/5/543.full.pdf [PubMed]
Thurner, P. J., Muller, R., Kindt, J. H., Schitter, G., Fantner, G. E., Wyss, P., Sennhauser, U., and Hansma, P. K., 2005, “Novel Techniques for High-Resolution Functional Imaging of Trabecular Bone,” Proceedings of Medical Imaging 2005: Physiology, Function, and Structure from Medical Images, Vol.5746, pp.515–526.
Kuhn, G., Schultz, M., Muller, R., and Ruhli, F. J., 2007, “Diagnostic Value of Micro-CT in Comparison With Histology in the Qualitative Assessment of Historical Human Postcranial Bone Pathologies,” Homo., 58(2), pp.97–115. [CrossRef] [PubMed]
Langheinrich, A. C., Stolle, C., Kampschulte, M., Lommel, D., Rau, W. S., and Bassaly, B., 2008, “Diagnostic Value of Ex-Vivo Three-Dimensional Micro-Computed Tomography Imaging of Primary Nonhematopoietic Human Bone Tumors: Osteosarcoma Versus Chondrosarcoma,” Acta Radiol., 49(8), pp.940–948. [CrossRef] [PubMed]
Schneider, P., Stauber, M., Voide, R., Stampanoni, M., Donahue, L. R., and Muller, R., 2007, “Ultrastructural Properties in Cortical Bone Vary Greatly in Two Inbred Strains of Mice as Assessed by Synchrotron Light Based Micro- and Nano-CT,” J. Bone Miner. Res., 22(10), pp.1557–1570. [CrossRef] [PubMed]
Cady, N. C., Fahrenkopf, N., and Mosier, A., 2009, “Novel Approaches to Biosensing and Nano-Biological Interactions,” Proc. SPIE, 7397, p. 739707. [CrossRef]
Lui, C., Cady, N. C., and Batt, C. A., 2009, “Nucleic Acid-Based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems,” Sensors, 9(5), pp.3713–3744. [CrossRef] [PubMed]
OrthoSensor, Inc., 2011, “Orthosensor,” last accessed June 24, 2011, http://www.orthosensor.com/orthosensor
Ding, T., Luo, Z. J., Zheng, Y., Hu, X. Y., and Ye, Z. X., 2010, “Rapid Repair and Regeneration of Damaged Rabbit Sciatic Nerves by Tissue-Engineered Scaffold Made From Nano-Silver and Collagen Type I,” Injury, 41(5), pp.522–527. [CrossRef] [PubMed]

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In