Research Papers

Methane Storage in Spherical Fullerenes

[+] Author and Article Information
Olumide O. Adisa

e-mail: olumide.adisa@adelaide.edu.au

James M. Hill

Nanomechanics Group,
School of Mathematical Sciences,
University of Adelaide,
Adelaide, SA 5005, Australia

1Corresponding author.

Manuscript received April 21, 2012; final manuscript received August 23, 2012; published online March 26, 2013. Assoc. Editor: Roger Narayan.

J. Nanotechnol. Eng. Med 3(4), 041002 (Mar 26, 2013) (4 pages) doi:10.1115/1.4007521 History: Received April 21, 2012; Revised August 23, 2012

In this paper, we investigate methane encapsulation in five spherical fullerenes C60,C240,C540,C960, and C1500. We exploit the 6–12 Lennard-Jones potential function and the continuum approximation to model the surface binding energies between methane and spherical fullerenes of varying sizes. Our results show that for a methane molecule interacting inside a spherical fullerene, the binding energies are minimized at locations which become closer to the fullerene wall as the size of the fullerene increases. However, we find that the methane molecule would require an applied external force to overcome the repulsive energy barrier in order to be encapsulated into a C60 fullerene. The present modeling indicates that the optimal minimum energy for methane storage in any spherical fullerene occurs for a fullerene with radius 6.17 Å, with a corresponding potential energy of 0.22eV which occurs for a fullerene bigger than a C60 but slightly smaller than a C240 as the ideal spherical fullerene for methane encapsulation. Overall, our results are in very good agreement with other theoretical studies and molecular dynamics simulations, and show that fullerenes might be good candidates for gas storage. However, the major advantage of the approach adopted here is the derivation of explicit analytical formulae from which numerical results for varying physical scenarios may be readily obtained.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Rajesh, Ahuja, T., and Kumar, D., 2009, “Recent Progress in the Development of Nano-Structured Conducting Polymers/Nanocomposites for Sensor Applications,” Sens. Actuators B, 136, pp. 275–286. [CrossRef]
Vaseashta, A., and Dimova-Malinovska, D., 2005, “Nanostructured and Nanoscale Devices, Sensors and Detectors,” Sci. Technol. Adv. Mater., 6, pp. 312–318. [CrossRef]
Besteman, K., Lee, J., Wiertz, F. G. M., Heering, H. A., and Dekker, C., 2003, “Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors,” Nano Lett., 3, pp. 727–730. [CrossRef]
Adisa, O. O., Cox, B. J., and Hill, J. M., 2010, “Encapsulation of Methane in Nanotube Bundles,” Micro Nano Lett., 5, pp. 291–295. [CrossRef]
Adisa, O. O., Cox, B. J., and Hill, J. M., 2011, “Encapsulation of Methane Molecules Into Carbon Nanotubes, Physica B, 406, pp. 88–93. [CrossRef]
Zhao, J., Buldum, A., Han, J., and Lu, J. P., 2002, “Gas Molecule Adsorption in Carbon Nanotubes and Nanotube Bundles, Nanotechnology, 13, pp. 195–200. [CrossRef]
Albesa, A. G., Fertitta, E. A., and Vincente, J. L., 2010, “Comparative Study of Methane Adsorption on Single-Walled Carbon Nanotubes,” Langmuir, 26, pp. 786–95. [CrossRef] [PubMed]
Thornton, A. W., Nairn, K. M., Hill, J. M., Hill, A. J., and Hill, M. R., 2009, “Metal-Organic Frameworks Impregnated With Magnesium-Decorated Fullerenes for Methane and Hydrogen Storage,” J. Am. Chem. Soc., 131, pp. 10662–10669. [CrossRef] [PubMed]
Severin, E. S., and Tildesley, D. J., 1980, “A Methane Molecule Adsorbed on a Graphite Surface,” Mol. Phys., 41, pp. 1401–1418. [CrossRef]
Adisa, O. O., Cox, B. J., and Hill, J. M., 2011, “Packing Configurations for Methane Storage in Carbon Nanotubes,” Eur. Phys. J. B, 79, pp. 177–184. [CrossRef]
Adisa, O. O., Cox, B. J., and Hill, J. M., “Open Carbon Nanocones as Candidates for Gas Storage,” J. Phys. Chem. C., 115, pp. 24528–24533. [CrossRef]
Bekyarova, E., Murata, K., Yudasaka, M., Kasuya, D., Iijima, S., Tanaka, H., Kahoh, H., and Kaneko, K., “Single-Wall Nanostructured Carbon for Methane Storage,” J. Phys. Chem. B, 107, pp. 4681–4684. [CrossRef]
Vakhrushev, A. V., and Suyetin, M. V., 2009, “Methane Storage in Bottle-Like Nanocapsules,” Nanotechnology, 20, pp. 125602–125606. [CrossRef] [PubMed]
Whitener, K. E., Jr., Cross, R. J., Saunders, M., Iwamatsu, S., Murata, S., Mizorogi, N., and Nagase, S., 2009, “Methane in an Open-Cage [60] Fullerene,” J. Am. Chem. Soc., 131, pp. 6338–6339. [CrossRef] [PubMed]
Adisa, O. O., Cox, B. J., and Hill, J. M., “Modelling the Surface Adsorption of Methane on Carbon Nanostructures,” Carbon, 49, pp. 3212–3218. [CrossRef]
Volkova, E. I., Suyetin, M. V., and Vakhrushev, A. V., 2010, “Temperature Sensitive Nanocapsule of Complex Structural Form for Methane Storage,” Nano Res. Lett., 5, pp. 205–210. [CrossRef]
Tanaka, H., Merraoui, M., Steele, W. A., and Kaneko, K., 2002, “Methane Adsorption on a Single-Walled Carbon Nanotube: A Density Functional Theory Model,” Chem. Phys. Lett., 352, pp. 334–341. [CrossRef]
Kowalczyk, P., Solarz, L., Do, D. D., Samborski, A., and MacElroy, J. M. D., 2006, “Nanoscale Tubular Vessels for Storage of Methane at Ambient Temperatures,” Langmuir, 22, pp. 9035–9040. [CrossRef] [PubMed]
Cao, D., Zhang, X., Chen, J., Wang, W., and Yun, J., 2003, “Optimization of Single-Walled Carbon Nanotube Arrays for Methane Storage at Room Temperature,” J. Phys. Chem. B, 107, pp. 13286–13292. [CrossRef]
Lee, J. W., Kang, H. C., Shim, W. G., Kim, C., and Moon, H., 2006, “Methane Adsorption on Multi-Walled Carbon Nanotube at (303.15, 313.15, and 323.15)k,” J. Chem. Eng. Data, 51, pp. 963–967. [CrossRef]
Arami-Niya, A., Daud, W. M. A. W., Mjalli, F. S., Abnisa, F., and Shafeeyan, M. S., 2011, “Production of Microporous Palm Shell Based Activated Carbon for Methane Adsorption: Modeling and Optimization Using Response Surface Methodology,” Chem. Eng. Res. Des., 90, pp. 776–784. [CrossRef]
Inomata, K., Kanazawa, K., Urabe, Y., Hosono, H., and Araki, T., 2002, “Natural Gas Storage in Activated Carbon Pellets,” Carbon, 40, pp. 87–93. [CrossRef]
Perrin, A., Celzard, A., Marêché, J. F., and Furdin, G., “Improved Methane Storage Capacities by Sorption on Wet Active Carbon,” Carbon, 42, pp. 1249–1256. [CrossRef]
Guan, C., Su, F., Zhao, X. S., and Wang, K., 2008, “Methane Storage in a Template-Synthesized Carbon,” Sep. Purif. Technol., 64, pp. 124–126. [CrossRef]
Baowan, D., Thamwattana, N., and Hill, J. M., 2007, “Continuous Modelling of Spherical and Spheroidal Carbon Onions,” Eur. Phys. J. D, 44, pp. 117–123. [CrossRef]
Thamwattana, N., and Hill, J. M., 2008, “Oscillation of Nested Fullerenes (Carbon Onions) in Carbon Nanotubes,” J. Nanopart Res., 10, pp. 665–677. [CrossRef]
Girifalco, L. A., Hodak, M., and Lee, R. S., 2000, “Carbon Nanotubes, Bulkyballs, Ropes, and a Universal Graphitic Potential,” Phys. Rev. B, 62, pp. 13104–13110. [CrossRef]
Hilder, T. A., and Hill, J. M., 2007, “Modelling the Encapsulation of the Anticancer Drug Cisplatin Into Carbon Nanotubes,” Nanotechnology, 18, p. 275704. [CrossRef]
Gadd, G. E., Evans, P. J., Kennedy, S., James, M., Elcombe, M., Cassidy, D., Moricca, S., Holmes, J., Webb, N., Dixon, A., and Prasad, P., 1999, “Gas Storage in Fullerenes,” Fullerene Sci. Technol., 7, pp. 1043–1143. [CrossRef]
Cox, B. J., Thamwattana, N., and Hill, J. M., 2006, “Mechanics of Atoms and Fullerenes in Single-Walled Carbon Nanotubes. I. Acceptance and Suction Energies,” Proc. R. Soc. A, 463, pp. 461–476. [CrossRef]


Grahic Jump Location
Fig. 1

CH4 interacting with spherical fullerene

Grahic Jump Location
Fig. 2

Energy profile for CH4 molecule inside spherical fullerenes of varying radii

Grahic Jump Location
Fig. 3

Minimum interaction energy versus radius of fullerene




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In