Technical Brief

Characterization of the Mechanical Properties of Monolayer Molybdenum Disulfide Nanosheets Using First Principles

[+] Author and Article Information
R. Ansari

Department of Mechanical Engineering,
University of Guilan,
P.O. Box 3756,
Rasht, Iran
e-mail: r_ansari@guilan.ac.ir

S. Malakpour, S. Ajori

Department of Mechanical Engineering,
University of Guilan,
P.O. Box 3756,
Rasht, Iran

M. Faghihnasiri

Department of Physics,
University of Guilan,
P.O. Box 1914,
Rasht, Iran

1Corresponding author.

Manuscript received July 15, 2013; final manuscript received December 5, 2013; published online January 29, 2014. Assoc. Editor: Abraham Wang.

J. Nanotechnol. Eng. Med 4(3), 034501 (Jan 29, 2014) (4 pages) Paper No: NANO-13-1041; doi: 10.1115/1.4026207 History: Received July 15, 2013; Revised December 05, 2013

Recently, synthesized inorganic two-dimensional monolayer nanostructures are very promising to be applied in electronic devices. This article explores the mechanical properties of a monolayer molybdenum disulfide (MoS2) including Young's bulk and shear moduli and Poisson's ratio by applying density functional theory (DFT) calculation based on the generalized gradient approximation (GGA). The results demonstrate that the elastic properties of MoS2 nanosheets are less than those of graphene and hexagonal boron-nitride (h-BN) nanosheets. However, their Poisson's ratio is found to be higher than that of graphene and h-BN nanosheet. It is also observed that due to the special structure of MoS2, the thickness of nanosheet changes when the axial strain is applied.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., 2004, “Electric Field Effect in Atomically Thin Carbon Films,” Science, 306, pp. 666–669. [CrossRef] [PubMed]
Zhang, Y., Tan, Y. W., Stormer, H. L., and Kim, Ph., 2005, “Experimental Observation of the Quantum Hall Effect and Berry's Phase in Grapheme,” Nature, 438, pp. 201–204. [CrossRef] [PubMed]
Lv, R., and Terrones, M., 2012, “Towards New Graphene Materials: Doped Graphene Sheets and Nanoribbons,” Mater. Lett., 78, pp. 209–218. [CrossRef]
Morozov, S., Novoselov, K., Katsnelson, M., Schedin, F., Elias, D. C., Jaszczak, J. A., and Geim, A. K., 2008, “Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer,” Phys. Rev. Lett., 100, p. 016602. [CrossRef] [PubMed]
Topsakal, M., Cahangirov, and S., Ciraci, S., 2010, “The Response of Mechanical and Electronic Properties of Graphane to the Elastic Strain,” Appl. Phys. Lett., 96, pp. 091912–091914. [CrossRef]
Ni, Zh., Bu, H., Zou, M., Yi, H., Bi, K., and Chen, Y., 2010, “Anisotropic Mechanical Properties of Graphene Sheets from Molecular Dynamics,” Physica B, 405, pp. 1301–1306. [CrossRef]
Ansari, R., Ajori, S., and Motevalli, B., 2012, “Mechanical Properties of Defective Single-Layered Graphene Sheets Via Molecular Dynamics Simulation,” Superlattices Microstruct., 51, pp. 274–289. [CrossRef]
Nag, A., Raidongia, K., Hembram, K. P. S. S., Datta, R., Waghmare, U. V., and Rao, C. N. R., 2010, “Graphene Analogue of BN: Novel Synthesis and Properties,” ACS Nano, 4, pp. 1539–1544. [CrossRef] [PubMed]
Li, Y., and Chen, Zh., 2013, “XH/π (X = C, Si) Interactions in Graphene and Silicene: Weak in Strength, Strong in Tuning Band Structures,” J. Phys. Chem. Lett., 4, pp. 269–275. [CrossRef]
Chen, Z., Lin, Y., Rooks, M. J., and Avouris, P., 2007, “Graphene Nano-Ribbon Electronics,” Physica E, 40, pp. 228–232. [CrossRef]
Han, M., Özyilmaz, B., Zhang, Y., and Kim, P., 2007, “Energy Band-Gap Engineering of Graphene Nanoribbons,” Phys. Rev. Lett., 98, p. 206805. [CrossRef] [PubMed]
Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H., 2008, “Chemically Derived, Ultra Smooth Graphene Nanoribbon Semiconductors,” Science, 319, pp. 1229–1233. [CrossRef] [PubMed]
Ayari, A., Cobas, E., Ogundadegbe, O., and Fuhrer, M. S., 2007, “Realization and Electrical Characterization of Ultrathin Crystals of Layered Transition-Metal Dichalcogenides,” J. Appl. Phys., 101, p. 014507. [CrossRef]
Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R., and Bucher, E., 2004, “High Mobility Field-Effect Transistors Based on Transition Metal Dichalcogenides,” Appl. Phys. Lett., 84, pp. 3301–3303. [CrossRef]
Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., and Ryu, S., 2010, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,” ACS Nano, 4, pp. 2695–2700. [CrossRef] [PubMed]
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., and Wang, F., 2010, “Emerging Photoluminescence in Monolayer MoS2”Nano Lett., 10, pp. 1271–1275. [CrossRef] [PubMed]
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A., 2011, “Single-Layer MoS2 Transistors,” Nat. Nanotechnol., 6, pp. 147–150. [CrossRef] [PubMed]
Cooper, R. C., Lee, Ch., Marianetti, Ch. A., Wei, X., Hone, J., and Kysar, J. W., 2013, “Nonlinear Elastic Behavior of Two-Dimensional Molybdenum Disulfide,” Phys. Rev. B, 87, pp. 035423–035433. [CrossRef]
Castellanos-Gomez, A., Poot, M., Steele, G. A., van derZant, H. S. J., Agraït, N., and Rubio-Bollinger, G., 2012, “Elastic Properties of Freely Suspended MoS2 Nanosheets,” Adv. Mater., 24, pp. 772–775. [CrossRef] [PubMed]
Bertolazzi, S., Brivio, J., and Kis, A., 2011, “Stretching and Breaking of Ultrathin MoS2”ACS Nano, 5, pp. 9703–9709. [CrossRef] [PubMed]
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., and Wentzcovitch, R. M., 2009, “Quantum Espresso,” J. Phys.: Condens. Matter, 21, p. 395502. [CrossRef]
Perdew, J. P., Burke, K., and Ernzerhof, M., 1996, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., 77, pp. 3865–3868. [CrossRef] [PubMed]
Perdew, J. P., Burke, K., and Wang, Y., 1996, “Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System,” Phys. Rev. B., 54, pp. 16533–16539. [CrossRef]
Monkhorst, H. J., and Pack, J. D., 1976, “On Special Points for Brillouin Zone Integrations,” Phys. Rev. B, 13, pp. 5188–5192. [CrossRef]
Min, K., and Aluru, N. R., 2011, “Mechanical Properties of Graphene Under Shear Deformation,” Appl. Phys. Lett., 98, p. 013113. [CrossRef]
Wagner, P., Ivanovskaya, V. V., Rayson, M. J., Briddon, P. R., and Ewels, C. P., 2013, “Mechanical Properties of Nanosheets and Nanotubes Using a New Geometry Independent Volume Definition,” J. Phys.: Condens. Matter, 25, pp. 155302–155323. [CrossRef] [PubMed]
Zhukovskii, Y. F., Piskunov, S., Pugno, N., Berzina, B., Trinkler, L., and Bellucci, S., 2009, “Ab Initio Simulations on the Atomic and Electronic Structure of Single-Walled BN Nanotubes and Nanoarches” J. Phys. Chem. Solids, 70, pp. 796–803. [CrossRef]


Grahic Jump Location
Fig. 1

Monolayer MoS2 nanosheet, (a) isometric view and (b) top view

Grahic Jump Location
Fig. 2

Mo–S bonds with defined parameters

Grahic Jump Location
Fig. 3

Variation of strain energy with uniaxial strain

Grahic Jump Location
Fig. 4

Variation of strain energy with biaxial strain

Grahic Jump Location
Fig. 5

Schematic representation of applied shear strain

Grahic Jump Location
Fig. 6

Variation of strain energy with shear strain




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In