0
Research Papers

Effects of 3,5,3′-Triiodothyroacetic Acid, Nanoencapsulated or Not, on Intact and Atrophic Skin in Rats

[+] Author and Article Information
Daniele Trevizan Pera

Postgraduate Program
in Biotechnology (PPGBiotec),
Federal University of São Carlos (UFSCar),
São Carlos, São Paulo CEP 13565-905, Brazil
e-mail: danitepe@gmail.com

Jéssica Freitas Planello

Department of Medicine (DMed),
Federal University of São Carlos (UFSCar),
São Carlos, São Paulo CEP 13565-905, Brazil
e-mail: jplanello@yahoo.com.br

Juliana Cancino

Physics Institute of São Carlos (IFSC),
University of São Paulo (USP),
São Carlos, São Paulo CEP 13566-590, Brazil
e-mail: jucancino@yahoo.com.br

Igor Polikarpov

Physics Institute of São Carlos (IFSC),
University of São Paulo (USP),
São Carlos, São Paulo CEP 13566-590, Brazil
e-mail: ipolikarpov@ifsc.usp.br

Valtencir Zucolotto

Physics Institute of São Carlos (IFSC),
University of São Paulo (USP),
São Carlos, São Paulo CEP 13566-590, Brazil
e-mail: zuco@ifsc.usp.br

Lucimar Retto da Silva de Avó

Department of Medicine (DMed),
Federal University of São Carlos (UFSCar),
São Carlos, São Paulo CEP 13565-905, Brazil
e-mail: lucimar@ufscar.br

Carla Maria Ramos Germano

Department of Medicine (DMed),
Federal University of São Carlos (UFSCar),
São Carlos, São Paulo CEP 13565-905, Brazil
e-mail: cgermano@ufscar.br

Débora Gusmão Melo

Department of Medicine (DMed),
Federal University of São Carlos (UFSCar),
São Carlos, São Paulo CEP 13565-905, Brazil
e-mail: dgmelo@ufscar.br

1Corresponding author.

Manuscript received March 18, 2014; final manuscript received September 26, 2014; published online October 15, 2014. Assoc. Editor: Malisa Sarntinoranont.

J. Nanotechnol. Eng. Med 5(3), 031001 (Oct 15, 2014) (8 pages) Paper No: NANO-14-1024; doi: 10.1115/1.4028695 History: Received March 18, 2014; Revised September 26, 2014

We aimed to investigate 3,5,3′-triiodothyroacetic acid (TRIAC) effects on intact and atrophic skin induced by glucocorticoids (GCs) in rats and the effects induced by nanoencapsulation. The effects of TRIAC and nanoencapsulated TRIAC were evaluated on intact and atrophic skin in TRIAC experiment and nanoencapsulated TRIAC experiment, respectively. Both experiments had two phases: phase I, cutaneous atrophy was induced; phase II, TRIAC or nanoencapsulated TRIAC was administrated. Our results showed that topical use of TRIAC with or without nanoencapsulation was able to reverse cutaneous atrophy. Nanoencapsulated TRIAC showed less systemic changes than TRIAC; therefore, it is possibly a safer drug for topical administration.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Topics: Skin , Vehicles , Drugs
Your Session has timed out. Please sign back in to continue.

References

Brazzini, B., and Pimpinelli, N., 2002, “New and Established Topical Corticosteroids in Dermatology: Clinical Pharmacology and Therapeutic Use,” Am. J. Clin. Dermatol., 3(1), pp. 47–58. [CrossRef] [PubMed]
Seguro, L. P., Rosario, C., and Shoenfeld, Y., 2013, “Long-Term Complications of Past Glucocorticoid Use,” Autoimmun. Rev., 12(5), pp. 629–632. [CrossRef] [PubMed]
LoPresti, J. S., Eigen, A., Kaptein, E., Anderson, K. P., Spencer, C. A., and Nicoloff, J. T., 1989, “Alterations in 3,3′,5′-Triiodothyronine Metabolism in Response to Propylthiouracil, Dexamethasone, and Thyroxine Administration in Man,” J. Clin. Invest., 84(5), pp.1650–1656. [CrossRef] [PubMed]
Antonini, D., Sibilio, A., Dentice, M., and Missero, C., 2013, “An Intimate Relationship Between Thyroid Hormone and Skin: Regulation of Gene Expression,” Front. Endocrinol., 4, p. 104. [CrossRef]
Nunes, M. T., 2003, “Thyroid Hormones: Mechanism of Action and Biological Significance,” Arq. Bras. Endocrinol. Metab., 47(6), pp. 639–643. [CrossRef]
Yazdanparast, P., Carlsson, B., Oikarinen, A., Risteli, J., Lavin, T., and Faergemann, J., 2006, “Action of Topical Thyroid Hormone Analogue, Triiodothyroacetic Acid in Reversing Glucocorticoid Induced Skin Atrophy in Humans,” Thyroid, 16(11), pp. 1157–1162. [CrossRef] [PubMed]
Brent, G. A., 2012, “Mechanisms of Thyroid Hormone Action,” J. Clin. Invest., 122(9), pp. 3035–3043. [CrossRef] [PubMed]
Contreras-Jurado, C., García-Serrano, L., Gómez-Ferrería, M., Costa, C., Paramio, J. M., and Aranda, A., 2011, “The Thyroid Hormone Receptors as Modulators of Skin Proliferation and Inflammation,” J. Biol. Chem., 286(27), pp. 24079–24088. [CrossRef] [PubMed]
Safer, J. D., 2011, “Thyroid Hormone Action on Skin,” Dermatoendocrinology, 3(3), pp. 211–215. [CrossRef]
Gloss, B., Giannocco, G., Swanson, E. A., Moriscot, A. S., Chiellini, G., Scanlan, T., Baxter, J. D., and Dillmann, W. H., 2005, “Different Configurations of Specific Thyroid Hormone Response Elements Mediate Opposite Effects of Thyroid Hormone and GC-1 on Gene Expression,” Endocrinology, 146(11), pp. 4926–4933. [CrossRef] [PubMed]
Cheng, S. Y., Leonard, J. L., and Davis, P. J., 2010, “Molecular Aspects of Thyroid Hormone Actions,” Endocr. Rev., 31(2), pp.139–170. [CrossRef] [PubMed]
Dumitrescu, A. M., and Refetoff, S., “Novel Biological and Clinical Aspects of Thyroid Hormone Metabolism,” Endocr. Dev., 10, pp.127–139. [CrossRef] [PubMed]
Martínez, L., Nascimento, A. S., Nunes, F. M., Phillips, K., Aparicio, R., Dias, S. M., Figueira, A. C., Lin, J. H., Nguyen, P., Apriletti, J. W., Neves, F. A., Baxter, J. D., Webb, P., Skaf, M. S., and Polikarpov, I., 2009, “Gaining Ligand Selectivity in Thyroid Hormone Receptors Via Entropy,” Proc. Natl. Acad. Sci. U.S.A., 106(49), pp. 20717–20722. [CrossRef] [PubMed]
Baxter, J. D., and Webb, P., 2009, “Thyroid Hormone Mimetics: Potential Applications in Atherosclerosis, Obesity and Type 2 Diabetes,” Nat. Rev. Drug Discov., 8(4), pp. 308–320. [CrossRef] [PubMed]
Faergemann, J., Särnhult, T., Hedner, E., Carlsson, B., Lavin, T., Zhao, X. H., and Sun, X. Y., 2002, “Dose-Response Effects of Tri-Iodothyroacetic Acid (Triac) and Other Thyroid Hormone Analogues on Glucocorticoid-Induced Skin Atrophy in the Haired Mouse,” Acta Derm. Venereol., 82(3), pp. 179–183. [CrossRef] [PubMed]
Yazdanparast, P., Carlsson, B., Oikarinen, A., Risteli, J., and Faergemann, J., 2004, “A Thyroid Hormone Analogue, Triiodothyroacetic Acid, Corrects Corticosteroid-Downregulated Collagen Synthesis,” Thyroid, 14(5), pp. 345–353. [CrossRef] [PubMed]
Kalia, Y. N., and Guy, R. H., 2001, “Modeling Transdermal Drug Release,” Adv. Drug Deliv. Rev., 48(2–3), pp. 159–172. [CrossRef] [PubMed]
Shaffer, C., 2005, “Nanomedicine Transforms Drug Delivery,” Drug Discov. Today, 10(23–24), pp. 1581–1582. [CrossRef] [PubMed]
Yih, T. C., and Al-Fandi, M., 2006, “Engineered Nanoparticles as Precise Drug Delivery Systems,” J. Cell Biochem., 97(6), pp. 1184–1190. [CrossRef] [PubMed]
Müller, R. H., Radtke, M., and Wissing, S. A., 2002, “Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in Cosmetic and Dermatological Preparations,” Adv. Drug Deliv. Rev., 54(Suppl 1), pp. S131–S155. [CrossRef] [PubMed]
Alvarez-Román, R., Naik, A., Kalia, Y. N., Guy, R. H., and Fessi, H., 2004, “Enhancement of Topical Delivery From Biodegradable Nanoparticles,” Pharm. Res., 21(10), pp. 1818–1825. [CrossRef] [PubMed]
Guterres, S. S., Alves, M. P., and Pohlmann, A. R., 2007, “Polymeric Nanoparticles, Nanospheres and Nanocapsules, for Cutaneous Applications,” Drug Target Insights, 2, pp.147–157. [PubMed]
Alvarez-Román, R., Naik, A., Kalia, Y. N., Guy, R. H., and Fessi, H., 2004, “Skin Penetration and Distribution of Polymeric Nanoparticles,” J. Control. Release, 99(1), pp. 53–62. [CrossRef] [PubMed]
Couvreur, P., Barratt, G., Fattal, E., Legrand, P., and Vauthier, C., 2002, “Nanocapsule Technology: A Review,” Crit. Rev. Ther. Drug Carrier Syst., 19(2), pp. 99–134. [CrossRef] [PubMed]
Nagavarma, B. V. N., Yadav, H. K. S., Ayaz, A., Vasudha, L. S., and Shivakumar, H. G., 2012, “Different Techniques for Preparation of Polymeric Nanoparticles—A Review,” Asian J. Pharm. Clin. Res., 5(3), pp. 16–23. Available at: http://www.ajpcr.com/Vol5Suppl3/1128.pdf
Gonzalo, T., Lollo, G., Garcia-Fuentes, M., Torres, D., Correa, J., Riguera, R., Fernandez-Megia, E., Calvo, P., Aviles, P., Jose Guillen, M., and Jose Alonso, M., 2013, “A New Potential Nano-Oncological Therapy Based on Polyamino Acid Nanocapsules,” J. Control. Release, 169(1–2), pp. 10–16. [CrossRef] [PubMed]
Wischke, C., and Schwendeman, S. P., 2008, “Principles of Encapsulating Hydrophobic Drugs in PLA/PLGA Microparticles,” Int. J. Pharm., 364(2), pp. 298–327. [CrossRef] [PubMed]
Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F., and Farokhzad, O. C., 2012, “Targeted Polymeric Therapeutic Nanoparticles: Design, Development and Clinical Translation,” Chem. Soc. Rev., 41(7), pp. 2971–3010. [CrossRef] [PubMed]
Haapasaari, K. M., Risteli, J., and Oikarinen, A., 1996, “Recovery of Human Skin Collagen Synthesis After Short-Term Topical Corticosteroid Treatment and Comparison Between Young and Old Subjects,” Br. J. Dermatol., 135(1), pp. 65–69. [CrossRef] [PubMed]
Oishi, Y., Fu, Z. W., Ohnuki, Y., Kato, H., and Noguchi, T., 2002, “Molecular Basis of the Alteration in Skin Collagen Metabolism in Response to in Vivo Dexamethasone Treatment: Effects on the Synthesis of Collagen Type I and III, Collagenase, and Tissue Inhibitors of Metalloproteinases,” Br. J. Dermatol., 147(5), pp. 859–868 [CrossRef] [PubMed]
Moreno, M., de Lange, P., Lombardi, A., Silvestri, E., Lanni, A., and Goglia, F., 2008, “Metabolic Effects of Thyroid Hormone Derivatives,” Thyroid, 18(2), pp. 239–253. [CrossRef] [PubMed]
Medina-Gomez, G., Hernàndez, A., Calvo, R. M., Martin, E., and Obregón, M. J., 2003, “Potent Thermogenic Action of Triiodothyroacetic Acid in Brown Adipocytes,” Cell Mol. Life Sci., 60(9), pp. 1957–1967. [CrossRef] [PubMed]
Medina-Gomez, G., Calvo, R. M., and Obregon, M. J., 2008, “Thermogenic Effect of Triiodothyroacetic Acid at Low Doses in Rat Adipose Tissue Without Adverse Side Effects in the Thyroid Axis,” Am. J. Physiol. Endocrinol. Metab., 294(4), pp. E688–E697. [CrossRef] [PubMed]
Anzai, R., Adachi, M., Sho, N., Muroya, K., Asakura, Y., and Onigata, K., 2012, “Long-Term 3,5,3′-Triiodothyroacetic Acid Therapy in a Child With Hyperthyroidism Caused by Thyroid Hormone Resistance: Pharmacological Study and Therapeutic Recommendations,” Thyroid, 22(10), pp. 1069–1075. [CrossRef] [PubMed]
Safer, J. D., Fraser, L. M., Ray, S., and Holick, M. F., 2011, “Topical Triiodothyronine Stimulates Epidermal Proliferation, Dermal Thickening, and Hair Growth in Mice and Rats,” Thyroid, 11(8), pp. 717–724. [CrossRef]
Yazdanparast, P., Carlsson, B., Sun, X. Y., Zhao, X. H., Hedner, T., and Faergemann, J., 2006, “Action of Topical Thyroid Hormone Analogues on Glucocorticoid-Induced Skin Atrophy in Mice,” Thyroid, 16(3), pp. 273–280. [CrossRef] [PubMed]
Zhang, B., Zhang, A., Zhou, X., Webb, P., He, W., and Xia, X., 2012, “Thyroid Hormone Analogue Stimulates Keratinocyte Proliferation but Inhibits Cell Differentiation in Epidermis,” Int. J. Immunopathol. Pharmacol., 25(4), pp. 859–869. Available at: http://connection.ebscohost.com/c/articles/89166477/thyroid-hormone-analogue-stimulates-keratinocyte-proliferation-but-inhibits-cell-differentiation-epidermis [PubMed]
Safer, J. D., Crawford, T. M., Fraser, L. M., Hoa, M., Ray, S., Chen, T. C., Persons, K., and Holick, M. F., 2003, “Thyroid Hormone Action on Skin: Diverging Effects of Topical Versus Intraperitoneal Administration,” Thyroid, 13(2), pp. 159–165. [CrossRef] [PubMed]
Safer, J. D., 2013, “Thyroid Hormone and Wound Healing,” J. Thyroid Res., 2013, p. 124538. [CrossRef] [PubMed]
Elsabahy, M., and Wooley, K. L., 2012, “Design of Polymeric Nanoparticles for Biomedical Delivery Applications,” Chem. Soc. Rev., 41(7), pp. 2545–2561. [CrossRef] [PubMed]
Santini, F., Vitti, P., Chiovato, L., Ceccarini, G., Macchia, M., Montanelli, L., Gatti, G., Rosellini, V., Mammoli, C., Martino, E., Chopra, I. J., Safer, J. D., Braverman, L. E., and Pinchera, A., 2003, “Role for Inner Ring Deiodination Preventing Transcutaneous Passage of Thyroxine,” J. Clin. Endocrinol. Metab., 88(6), pp. 2825–2830. [CrossRef] [PubMed]
Schoepe, S., Vonk, R., Schäcke, H., Zollner, T. M., Asadullah, K., and Röse, L., 2011, “Shortened Treatment Duration of Glucocorticoid-Induced Skin Atrophy in Rats,” Exp.Dermatol., 20(10), pp. 853–855. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Schematic representation of experimental design. Each experiment was carried out in two phases. In phase I, animals were divided into two groups: in group 1, animals remained with intact skin; in group 2, cutaneous atrophy was induced by topical administration of Clobetasol propionate for 10 days. In phase II, each group of animals with intact (group 1) or atrophic skin (group 2) was subdivided 2 subgroups: in subgroups A, the vehicle was used; in subgroups B, TRIAC or nanoencapsulated TRIAC was administered daily for 14 days, depending on the experiment.

Grahic Jump Location
Fig. 2

Effects of vehicle or TRIAC/nanoencapsulated TRIAC in epidermal thickness of rats with intact or atrophic skin—data are represented as mean ± SE (bars). In TRIAC experiment: intact skin vehicle (subgroup 1 A), intact skin TRIAC (subgroup 1B), atrophy skin vehicle (subgroup 2 A), and atrophy skin TRIAC (subgroup 2B). In nanoencapsulated TRIAC experiment: intact skin vehicle (subgroup 1 A), intact skin nanoencapsulated TRIAC (subgroup 1B), atrophic skin vehicle (subgroup 2 A), and atrophic skin nanoencapsulated TRIAC (subgroup 2B). *p < 0.05.

Grahic Jump Location
Fig. 3

Illustrative photomicrography of epidermal thickness at the end of the experiments in different groups. In TRIAC experiment: intact skin vehicle (subgroup 1 A), intact skin TRIAC (subgroup 1B), atrophic skin vehicle (subgroup 2 A), and atrophic skin TRIAC (subgroup 2B). In nanoencapsulated TRIAC experiment: intact skin vehicle (subgroup 1 A), intact skin nanoencapsulated TRIAC (subgroup 1B), atrophic skin vehicle (subgroup 2 A), and atrophic skin nanoencapsulated TRIAC (subgroup 2B) (400×).

Grahic Jump Location
Fig. 4.

Illustrative photomicrography of dermal appearance in picrosirius staining histological slides: no atrophy reversion (a), partial atrophy reversion (b), and total atrophy reversion (c) in TRIAC experiment; and no atrophy reversion (d), partial atrophy reversion (e), and total atrophy reversion (f) in nanoencapsulated TRIAC experiment (400×).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In