0
Research Papers

A Review and Parametric Investigation Into Nanofluid Viscosity Models

[+] Author and Article Information
Paul N. Nwosu

Department of Mechanical Engineering Science,
University of Johannesburg,
P.O. Box 524,
Auckland Park 2006, South Africa
e-mail: pauln@uj.ac.za

Josua Meyer, Mohsen Sharifpur

Department of Mechanical
and Aeronautical Engineering,
University of Pretoria,
Private Bag X20,
Hatfield 0028, South Africa

1Corresponding author.

Manuscript received October 29, 2013; final manuscript received November 8, 2014; published online February 2, 2015. Assoc. Editor: Roger Narayan.

J. Nanotechnol. Eng. Med 5(3), 031008 (Aug 01, 2014) (11 pages) Paper No: NANO-13-1080; doi: 10.1115/1.4029079 History: Received October 29, 2013; Revised November 08, 2014; Online February 02, 2015

The degree of variability between theoretical and empirical nanofluid viscosity model predictions and relevant experimental data is examined in this work. Results confirm a high degree of variability in the compared data; with some observed inconsistencies in the model formulations and the predicted data, consequently, a range of constitutive factors need to be incorporated into the models in order to accurately predict the rheological behavior of nanofluids in different use conditions. Notably, conducting broad theoretical studies and empirical investigations into the rheological behavior of nanofluids incorporating the fundamental parametric variables can plausibly lead to near-generalized models.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hosseini, S. M., Moghadassi, A. R., and Henneke, D. E., 2010, “A New Dimensionless Group Model for Determining the Viscosity of Nanofluids,” J. Therm. Anal. Calorim., 100(3), pp. 873–877. [CrossRef]
Dzido, G., Chmiel-Kurowska, K., Gierczycki, A., and Jarz¸bski, A. B., 2009, “Application of Klein's Equation for Description of Viscosity of Nanofluid,” Comput. Aided Chem. Eng., 26, pp. 955–960. [CrossRef]
Ho, C. J., Chen, M. W., and Li, Z. W., 2008, “Numerical Simulation of Natural Convection of Nanofluid in a Square Enclosure: Effects Due to Uncertainties of Viscosity and Thermal Conductivity,” Int. J. Heat Mass Transfer, 51(17–18), pp. 4506–4516. [CrossRef]
Krieger, I. M., and Dougherty, T. J., 1959, “A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres,” Trans. Soc. Rheol., 3(1), pp. 137–152. [CrossRef]
Keblinski, P., Phillpot, S. R. E., Choi, S. U. S., and Eastman, J. A., 2002, “Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids),” Int. J. Heat Mass Transfer, 45(4), pp. 855–863. [CrossRef]
Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., and Mintsa, H. A., 2007, “Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon,” Int. J. Heat Fluid Flow, 28(6), pp. 1492–1506. [CrossRef]
Choi, S. U. S., and Eastman, J. A., 1995, “Enhancing Thermal Conductivity of Fluid With Nanoparticles,” International Mechanical Engineering Congress and Exhibition, San Francisco, CA, Nov. 12–17.
Wang, L. Q., ed., 2009, Advances in Transport Phenomena, ADVTRANS 1, Springer-Verlag, Berlin, Heidelberg, Germany, pp. 135–177.
Venerus, D. C., Buongiorno, J., Christianson, R., Townsend, J., Bang, I. C., Chen, G., Chung, S. J., Chyu, M., Chen, H., Ding, Y., Dubois, F., Dzido, G., Funfschilling, D., Galand, Q., Gao., J., Hong, H., Horton, M., Hu, L., Iorio, C. S., Jarzebski, A. B., Jiang., Y., Kabelac, S., Mark, K. A., Kim, C., Kim, J., Kim, S., McKrell, T., Ni, R., Philip, J., Prabhat, N., Song, P., Vaerenbergh, S. V., Wen, D., Witharana, S., Zhao, X., and Zhou, S., 2010, “Viscosity Measurements,” Appl. Rheol., 20(4), pp. 1–7.
Yanjiao, L., Zhou, J., Tung, S., Schneider, E., and Xi, S., 2009, “A Review on Development of Nanofluid Preparation and Characterization,” Powder Technol., 196(2), pp. 89–101. [CrossRef]
Masoumi, N., Sohrabi, N., and Behzadmehr, A., 2009, “A New Model for Calculating the Effective Viscosity of Nanofluids,” J. Phys. D: Appl. Phys., 42(5), p. 055501. [CrossRef]
Avsec, J., and Oblak, M., 2007, “The Calculation of Thermal Conductivity, Viscosity and Thermodynamic Properties for Nanofluids on the Basis of Statistical Nanomechanics,” Int. J. Heat Mass Transfer, 50(21–22), pp. 4331–4341. [CrossRef]
Okhio, C., Hodges, D., and Black, J., 2010, “Review of Literature on Nanofluid,” Multidiscip. J. Sci. Technol., J. Sel. Areas Nanotechnol. (JSAN), pp. 1–8.
Hosseini, M., and Ghader, S., 2010, “A Model for Temperature and Particle Volume Fraction Effect on Nanofluid Viscosity,” J. Mol. Liq., 153(2–3), pp. 139–145. [CrossRef]
Chen, H., Ding, Y., Lapkin, A., and Fan, X., 2009, “Rheological Behaviour of Ethylene Glycol–Titanate Nanotube Nanofluids,” J. Nanopart. Res., 11(6), pp. 1513–1520. [CrossRef]
Renon, H., and Prausnitz, J. M., 1968, “Local Composition in Thermodynamics Excess Functions for Liquid Mixtures,” J. AIChE, 14(1), pp. 135–144. [CrossRef]
Schmidt, A. J., Chiesa, M., Torchinsky, D. H., Jeremy, A., Boustani, A., McKinley, G. H., Nelson, K. A., and Johnson, G. C., 2008, “Experimental Investigation of Nanofluid Shear and Longitudinal Viscosities,” Appl. Phys. Lett.92(24), p. 244107. [CrossRef]
Wong, K. V., and Leon, O., 2010, “Applications of Nanofluids: Current and Future,” Adv. Mech. Eng., 5, p. 519659.
Vékás, L., Marinică, O., Susan-Resiga, D., Stoian, F. D., and Bica, D., 2004, “Magnetic and Flow Properties of High Magnetization Nanofluids,” Proceedings of the 6th International Conference on Hydraulic Machinery and Hydrodynamics, Timisoara, Romania, Oct. 21–22.
Yu, W., Xie, H., Li, Y., and Chen, L., 2011, “Experimental Investigation on Thermal Conductivity and Viscosity of Aluminum Nitride Nanofluid,” Particuology, 9(2), pp. 187–191. [CrossRef]
Prasher, R., Song, D., Wang, J., and Phelan, P. E., 2006, “Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications,” Appl. Phys. Lett., 89(13), p. 133108. [CrossRef]
Pastoriza-Gallego, M. J., Casanova, C., Legidoa, J. L., and Piñeiro, M. M., 2011, “CuO in Water Nanofluid: Influence of Particle Size and Polydispersity on Volumetric Behaviour and Viscosity,” Fluid Phase Equilib., 300(1--2), pp. 188–196. [CrossRef]
Garg, J., Poudel, B., Chiesa, M., Gordon, J. B., Ma, J. J., Wang, J. B., Ren, Z. F., Kang, W. T., Ohtani, H., Nanda, J., McKinley, G. H., and Chen, G., 2008, “Enhanced Thermal Conductivity and Viscosity of Copper Nanoparticles in Ethylene Glycol Nanofluid,” J. Appl. Phys., 103(7), p. 074301. [CrossRef]
Tavman, I., Turgut, A., Chirtoc, M., Schuchmann, H. P., and Tavman, S., 2008, “Experimental Investigation of Viscosity and Thermal Conductivity of Suspensions Containing Nanosized Ceramic Particles,” Arch. Mater. Sci. Eng., 34(2), pp. 99–104.
Batchelor, G. K., 1977, “The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles,” J. Fluid Mech., 83(1), pp. 97–117. [CrossRef]
Namburu, P. K., Kulkarni, D. P., Misra, D., and Das, D. K., 2007, “Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture,” Exp. Therm. Fluid Sci., 32(2), pp. 397–402. [CrossRef]
Chen, H., Ding, Y., and Tan, C., 2007, “Rheological Behaviour of Nanofluids,” New J. Phys., 9, p. 367. [CrossRef]
Zhou, S., Ni, R., and Funfschilling, D., 2010, “Effects of Shear Rate and Temperature on Viscosity of Alumina Polyalphaolefins Nanofluids,” J. Appl. Phys., 107(5), p. 054317. [CrossRef]
Tammann, G., and Hesse, W., 1926, “Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten,” Z. Anorg. Allg. Chem., 156(1), pp. 245–247. [CrossRef]
Paul, C. W., and Cotts, P. M., 1986, “Effects of Aggregation and Solvent Quality on the Viscosity of Semidilute Poly(vinylbutyra1) Solutions,” Macromolecules, 19(3), pp. 692–699. [CrossRef]
Chandrasekar, M., Suresh, S., and Chandra, B. A., 2010, “Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid,” Exp. Therm. Fluid Sci., 34(2), pp. 210–216. [CrossRef]
Murshed, S. M. S., Leong, K. C., and Yang, C., 2008, “Investigations of Thermal Conductivity and Viscosity of Nanofluids,” Int. J. Therm. Sci., 47(5), pp. 560–568. [CrossRef]
Tsai, T., Kuo, L., Chen, P., and Yang, C., 2008, “Effect of Viscosity of Base Fluid on Thermal Conductivity of Nanofluids,” Appl. Phys. Lett., 93(23), p. 233121. [CrossRef]
He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., and Lu, H., 2007, “Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe,” Int. J. Heat Mass Transfer, 50(11–12), pp. 2272–2281. [CrossRef]
Putnam, P. A., Cahill, D. G., Braun, P. V., Ge, Z., and Shimmin, R. G., 2006, “Thermal Conductivity of Nanoparticle Suspensions,” J. Appl. Phys., 99(8), p. 084308. [CrossRef]
Xie, H., Chen, L., and Wu, Q., 2008, “Measurements of the Viscosity of Suspensions (Nanofluids) Containing Nanosized Al2O3 Particles,” High Temp.-High Pressure, 37(2), pp. 127–135.
Einstein, A., 1906, “Eineneuebestimmung der molekuldimensionen,” Ann. Phys.324(2), pp. 289–306. [CrossRef]
Anoop, K. B., Kabelac, S., Sundararajan, T., and Das, S. K., 2009, “Rheological and Flow Characteristics of Nanofluids: Influence of Electroviscous Effects and Particle Agglomeration,” J. Appl. Phys., 106(3), p. 034909. [CrossRef]
Farris, R. D., 1968, “Prediction of the Viscosity of Multimodal Suspensions From Unimodal Viscosity Data,” Trans. Soc. Rheol., 12(2), p. 281. [CrossRef]
Muralidharan, G., and Runkana, V., 2009, “Rheological Modeling of Spherical Polymeric Gels and Dispersions Incorporating the Influence of Particle Size Distribution and Surface Forces,” Ind. Eng. Chem. Res., 48(19), pp. 8805–8811. [CrossRef]
Larson, R. G., 1999, The Structure and Rheology of Complex Fluids, Oxford University, Oxford, UK.
Frankel, N. A., and Acrivos, A., 1967, “On the Viscosity of a Concentrated Suspension of Solid Spheres,” Chem. Eng. Sci, 22(6), pp. 847–853. [CrossRef]
Graham, A. L., 1981, “On the Viscosity of Suspension of Solid Spheres,” Appl. Sci. Res., 37(3–4), pp. 275–286. [CrossRef]
Servais, C., Jones, R., and Roberts, I., 2002, “The Influence of Particle Size Distribution on the Processing of Food,” J. Food Eng., 51(3), pp. 201–208. [CrossRef]
Brinkman, H. C., 1952, “The Viscosity of Concentrated Suspensions and Solution,” J. Chem. Phys., 20(4), pp. 571–581. [CrossRef]
Lundgren, T. S., 1972, “Slow Flow Through Stationary Random Beds and Suspensions of Spheres,” J. Fluid Mech., 51(2), pp. 273–299. [CrossRef]
Doi, M., and Edwards, S. F., 1978, “Dynamics of Rod-like Macromolecules in Concentrated Solution,” J. Chem. Soc., Faraday Trans., Part 2, 2(74), pp. 918–932. [CrossRef]
Cheng, N.-S., and Law, A. W.-K., 2003, “Exponential Formula for Computing Effective Viscosity,” Powder Technol., 129(1–3), pp. 156–160. [CrossRef]
Powell, R. E., Roseveare, W. E., and Henry, E., 1941, “Diffusion, Thermal Conductivity, and Viscous Flow of Liquids,” Ind. Eng. Chem., 33(4), pp. 430–435. [CrossRef]
Renon, H., and Prausnitz, J. M., 1968, “Local Composition in Thermodynamics Excess Functions for Liquid Mixtures,” AIChE J., 14(1), pp. 135–144. [CrossRef]
Abu-Nada, E., 2009, “Effects of Variable Viscosity and Thermal Conductivity of Al2O3–Water Nanofluid on Heat Transfer Enhancement in Natural Convection,” Int. J. Heat Fluid Flow, 30(4), pp. 679–690. [CrossRef]
Noni, A., Garcia, D. E., and Hotza, D., 2002, “A Modified Model for the Viscosity of Ceramic Suspensions,” Ceram. Int., 28(7), pp. 731–735. [CrossRef]
Brenner, H., and Condiff, D. W., 1974, “Transport Mechanics in Systems of Orientable Particles. IV. Convective Transport,” J. Colloid Interface Sci., 47(1), pp. 199–264. [CrossRef]
Kulkarni, D. P., Das, D. K., and Chukwu, G. A., 2006, “Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension,” J. Nanosci. Nanotechnol., 6(4), pp. 1150–1154. [CrossRef] [PubMed]
Lu, W. Q., and Fan, Q. M., 2008, “Study for the Particle's Scale Effect on Some Thermophysical Properties of Nanofluids by a Simplified Molecular Dynamics Method,” Eng. Anal. Boundary Elem., 32(4), pp. 282–289. [CrossRef]
Kwek, D., Crivoi, A., and Duan, F., 2010, “Effects of Temperature and Particle Size on the Thermal Property Measurements of Al2O3-Water Nanofluids,” J. Chem. Eng. Data, 55(12), pp. 5690–5695. [CrossRef]
Doi, M., and Edwards, S. F., 1978, “Dynamics of Rod-Like Macromolecules in Concentrated Solution,” J. Chem. Soc., Faraday Trans., Part 1, 2(74), pp. 560–570. [CrossRef]
White, F. M., 1991, Viscous Fluid Flow, McGraw-Hill, New York.
Maiga, S. E. B., Nguyen, C. T., Galanis, N., and Roy, G., 2004, “Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube,” Superlattices Microstruct., 35(3–6), pp. 543–557. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

SEM image of TNT nanotubes with visible agglomeration, Chen et al. [15]

Grahic Jump Location
Fig. 2

Schematic of (a) closely packed nanoparticles, (b) loosely packed nanoparticles, and (c) and dimensions for a nanoparticle

Grahic Jump Location
Fig. 5

Evolution of ηr with r/h for the RW model [12]

Grahic Jump Location
Fig. 3

Comparison of empirical data with the model predictions for ηr versus dp

Grahic Jump Location
Fig. 4

Comparison of empirical data with the model predictions for ηeff versus T

Grahic Jump Location
Fig. 6

Effects of increasing φ/φm values on ηr

Grahic Jump Location
Fig. 8

Evolution of ηr with φ for the modified K–D [8] and Chen et al. [27] models

Grahic Jump Location
Fig. 9

Evolution of ηr with φ for the modified K–D [8] and K–D models [4]

Grahic Jump Location
Fig. 7

Evolution of ηr with φ for the modified K–D [8] and K–D models [4]

Tables

Errata

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In