Research Papers

Metal Oxide Nanopowder Production by Evaporation–
Condensation Using a Focused Microwave Radiation at a Frequency of 24 GHz

[+] Author and Article Information
A. V. Samokhin

Baykov Institute of Metallurgy and
Materials Science,
Leninskii pr., 49,
Moscow 119991, Russia
e-mail: samokhin@imet.ac.ru

N. V. Alexeev

Baykov Institute of Metallurgy and
Materials Science,
Leninskii pr., 49,
Moscow 119991, Russia
e-mail: alexeev@imet.ac.ru

A. V. Vodopyanov

Institute of Applied Physics,
Uljanova Street, 46,
Nizhny Novgorod 603950, Russia
e-mail: avod@yandex.ru

D. A. Mansfeld

Institute of Applied Physics,
Uljanova Street, 46,
Nizhny Novgorod 603950, Russia
e-mail: mansfeld@yandex.ru

Yu. V. Tsvetkov

Baykov Institute of Metallurgy and
Materials Science,
Leninskii pr., 49,
Moscow 119991, Russia
e-mail: tsvetkov@imet.ac.ru

Manuscript received August 25, 2015; final manuscript received November 6, 2015; published online December 14, 2015. Assoc. Editor: Abraham Quan Wang.

J. Nanotechnol. Eng. Med 6(1), 011008 (Dec 14, 2015) (6 pages) Paper No: NANO-15-1070; doi: 10.1115/1.4032015 History: Received August 25, 2015; Revised November 06, 2015

The new method for metal oxide nanopowder production is proposed. It is the evaporation–condensation using a focused microwave radiation. The source of microwaves is technological gyrotron with frequency of 24 GHz and power up to 7 kW with the energy density flux of 13 kW/cm2. Radiation was focused on the layer of powder of the treated material to ensure its evaporation, subsequent condensation of vapor in the gas stream, and deposition of particles on the water-cooled surface. Deposited powders consist of particles whose sizes are in the range of 20 nm to 1 μm. The powder consists of particles having different shapes—close to spherical shape as well as octahedral, which indicates that the mechanism of particles formation is “vapor–liquid–crystal” as well as “vapor–crystal.” The maximum evaporation rate was 100 g/hr. The proposed approach is original and extends the possible methods of producing nanoparticles.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Vajtai, R. , 2013, Springer Handbook of Nanomaterials, Springer Science & Business Media, Berlin, Heidelberg, p. 1257.
Guo, Z. , and Tan, L. , 2009, Fundamentals and Applications of Nanomaterials, Artech House, Norwood, MA, p. 249.
Nogi, K. , Naito, M. , and Yokoyama, T. , 2012, Nanoparticle Technology Handbook, 2nd ed., Elsevier, Amsterdam, p. 730.
Altavilla, C. , and Ciliberto, E. , 2010, Inorganic Nanoparticles: Synthesis, Applications, and Perspectives, CRC Press, Boca Raton, p. 576.
Swihart, M. T. , 2003, “ Vapor-Phase Synthesis of Nanoparticles,” Curr. Opin. Colloid Interface Sci., 8(1), pp. 127–133. [CrossRef]
Granqvist, C. , Kish, L. , and Marlow, W. , 2004, Gas Phase Nanoparticle Synthesis, Springer Science & Business Media, Berlin, p. 186.
Lorke, A. , Winterer, M. , Schmechel, R. , and Schulz, C. , 2012, Nanoparticles From the Gasphase. Formation, Structure, Properties, Springer Science & Business Media, Berlin, Heidelberg, p. 418.
Kotov, Y. A. , 2003, “ Electric Explosion of Wires as a Method for Preparation of Nanopowders,” J. Nanopart. Res., 5(5–6), pp. 539–550. [CrossRef]
Kato, M. , 1976, “ Preparation of Ultrafine Particles of Refractory Oxides by Gas-Evaporation Method,” Jpn. J. Appl. Phys., 15(5), pp. 757–760. [CrossRef]
Ullmann, M. , Friedlander, S. K. , and Schmidt-Ott, A. , 2002, “ Nanoparticle Formation by Laser Ablation,” J. Nanopart. Res., 4(6), pp. 499–509. [CrossRef]
Osipov, V. V. , Kotov, Yu. A. , Ivanov, M. G. , Samatov, O. M. , Lisenkov, V. V. , Platonov, V. V. , Murzakaev, A. M. , Medvedev, A. I. , and Azarkevich, E. I. , 2006, “ Laser Synthesis of Nanopowders,” Laser Phys., 16(1), pp. 116–125. [CrossRef]
Phillips, C. , 2007, Laser Ablation and Its Applications, Springer, Berlin.
Hahn, A. , Barcikowski, S. , and Chichkov, B. , 2008, “ Influences on Nanoparticle Production During Pulsed Laser Ablation,” J. Laser Micro/Nanoeng., 3(2), pp. 73–77. [CrossRef]
Semaltianos, N. G. , 2010, “ Nanoparticles by Laser Ablation,” Crit. Rev. Solid State Mater. Sci., 35(2), pp. 105–124. [CrossRef]
Wagener, Ph. , Barcikowski, S. , and Barsch, N. , 2011, “ Laser Technology: Fabrication of Nanoparticles and Nanomaterials Using Laser Ablation in Liquids,” Photonik Int., 1, pp. 20–23.
Kotov, Y. A. , Samatov, O. M. , Ivanov, M. G. , Murzakaev, A. M. , Medvedev, A. I. , Timoshenkova, O. R. , Demina, T. M. , and V'yukhina, I. V. , 2011, “ Production and Characteristics of Composite Nanopowders Using a Fiber Ytterbium Laser,” Tech. Phys., 56(5), pp. 652–655. [CrossRef]
Yang, G. , 2012, Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials, Pan Stanford Publishing, Singapore.
Habiba, K. , Makarov, V. I. , Weiner, B. R. , and Morell, G. , 2014, “ Fabrication of Nanomaterials by Pulsed Laser Synthesis,” Manufacturing Nanostructures, One Central Press, Manchester, UK.
Bardakhanov, S. P. , Korchagin, A. I. , Kuksanov, N. K. , Lavrukhin, A. V. , Salimov, R. A. , Fadeev, S. N. , and Cherepkov, V. V. , 2006, “ Nanopowders Obtained by Evaporating Initial Substances in an Electron Accelerator at Atmospheric Pressure,” Dokl. Phys., 51(7), pp. 353–356. [CrossRef]
Sokovnin, S. Yu. , and Il'ves, V. G. , 2012, “ Production of Nanopowders of Metal Oxides Using Pulsed Electron Beam in Low Pressure Gas,” ISRN Nanomaterials, Report No. 504634.
Zavjalov, A. P. , Zobov, K. V. , Chakin, I. K. , Syzrantsev, V. V. , and Bardakhanov, S. P. , 2014, “ Synthesis of Copper Nanopowders Using Electron-Beam Evaporation at Atmospheric Pressure of Inert Gas,” Nanotechnol. Russia, 9(11–12), pp. 660–666. [CrossRef]
Tanakaa, M. , and Watanabeb, T. , 2008, “ Vaporization Mechanism From Sn–Ag Mixture by Ar–H2 Arc for Nanoparticle Preparation,” Thin Solid Films, 516(19), pp. 6645–6649. [CrossRef]
Mahoney, W. , and Andres, R. P. , 1995, “ Aerosol Synthesis of Nanoscale Clusters Using Atmospheric Arc Evaporation,” Mater. Sci. Eng., A, 204(1–2), pp. 160–164. [CrossRef]
Munz, R. J. , Addona, T. , and da Cruz, A- C. , 1999, “ Application of Transferred Arcs to the Production of Nanoparticles,” Pure Appl. Chem., 71(10), pp. 1889–1897. [CrossRef]
Kong, P. , and Kawczak, A. , 2008, “ Plasma Synthesis of Nanoparticles for Nanocomposite Energy Applications,” 8th World Congress Nanocomposites, San Diego, CA, Sept. 15–18, preprint, pp. 1–12.
Tabrizi, N. S. , Ullmann, M. , Vons, V. A. , Lafont, U. , and Schmidt-Ott, A. , 2009, “ Generation of Nanoparticles by Spark Discharge,” J. Nanopart. Res., 11(2), pp. 315–332. [CrossRef]
Shin, M.-G. , and Park, D.-W. , 2010, “ Synthesis of Copper Nanopowders by Transferred Arc and Non-Transferred Arc Plasma Systems,” J. Optoelectron. Adv. Mater., 12(3), pp. 528–534.
Shigeta, M. , and Murphy, A. B. , 2011, “ Thermal Plasmas for Nanofabrication,” J. Phys. D: Appl. Phys., 44(17), p. 174025. [CrossRef]
Seo, J.-H. , and Hong, B.-H. , 2012, “ Thermal Plasma Synthesis of Nano-Sized Powders,” Nucl. Eng. Technol., 44(1), pp. 9–20. [CrossRef]
Malmberg, D. , Hahlin, P. , and Nilsson, E. , 2007, “ Microwave Technology in Steel and Metal Industry, an Overview,” ISIJ Int., 47(4), pp. 533–538. [CrossRef]
Agrawal, D. , 2010, “ Latest Global Developments in Microwave Materials Processing,” Mater. Res. Innovations, 14(10), pp. 3–8. [CrossRef]
Cao, W. , 2012, The Development and Application of Microwave Heating, InTech, Rijeka, Croatia.
Kitchen, H. J. , Vallance, S. R. , Kennedy, J. L. , Tapia-Ruiz, N. , Carassiti, L. , Harrison, A. , Whittaker, A. G. , Drysdale, T. D. , Kingman, S. W. , and Gregory, D. H. , 2014, “ Modern Microwave Methods in Solid-State Inorganic Materials Chemistry: From Fundamentals to Manufacturing,” Chem. Rev., 114(2), pp. 1170–1206. [CrossRef] [PubMed]
Zapevalov, V. E. , 2012, “ Evolution of the Gyrotrons,” Radiophys. Quantum Electron., 54(8–9), pp. 507–518. [CrossRef]
Palatnik, L. S. , and Papirov, I. I. , 1971, Epitaxial Films, Nauka, Moscow, Russia (in Russian).
Komnik, Yu. F. , 1979, Physics of Metal Films. Dimensional and Structural Effects, Atomizdat, Moscow, Russia (in Russian).
Newton, M. C. , and Warburton, P. A. , 2007, “ ZnO Tetrapod Nanocrystals,” Mater. Today, 10(5), pp. 50–54. [CrossRef]


Grahic Jump Location
Fig. 1

Experimental setup: 1—gyrotron, 2—waveguide, and 3—evaporation–condensation section

Grahic Jump Location
Fig. 2

Schematic view of the evaporation–condensation sections: 1—vessel, 2—thermally insulating material, 3—crucible with material, 4—water-cooled collector, 5—microwave focusing mirror, and 6—quartz window

Grahic Jump Location
Fig. 3

Dependence of the saturated vapor pressure of oxide on the temperature: 1—WO3, 2—SnO2, 3—ZnO, and 4—SiO2

Grahic Jump Location
Fig. 4

Crucible with WO3 before (left) and after (right) microwave processing

Grahic Jump Location
Fig. 5

Evaporation rate of WO3 on time: 1—thermally insulated unit, 2—water-cooled unit, sequential exposures, and 3—water-cooled unit continuous exposure

Grahic Jump Location
Fig. 6

Evaporation rate of WO3 versus microwave power

Grahic Jump Location
Fig. 7

Microscope image of WO3 powder

Grahic Jump Location
Fig. 8

Number (1, 1′) and volume (2, 2′) function of particle size distribution of WO3 particles: 1, 2—probability density and 1′, 2′—cumulative density

Grahic Jump Location
Fig. 9

Microscope image of SnO2 powder

Grahic Jump Location
Fig. 10

Number (1, 1′) and volume (2, 2′) function of particle size distribution of SnO2 particles: 1, 2—probability density and 1′, 2′—cumulative density

Grahic Jump Location
Fig. 11

Microscope image of ZnO powder



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In