Research Papers

Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation

[+] Author and Article Information
Marica Markovic

Austrian Cluster for Tissue Regeneration,
Institute of Materials Science and Technology,
Technische Universität Wien (TU Wien),
Getreidemarkt 9,
Vienna 1060, Austria
e-mail: marica.markovic@tuwien.ac.at

Jasper Van Hoorick

Polymer Chemistry and Biomaterials Research Group,
Ghent University,
Krijgslaan 281 S4-bis,
Ghent 9000, Belgium;
Brussels Photonics Team,
Department of Applied Physics and Photonics,
Vrije Universiteit Brussel,
Pleinlaan 2,
Elsene 1050, Belgium
e-mail: jasper.vanhoorick@ugent.be

Katja Hölzl

Austrian Cluster for Tissue Regeneration,
Institute of Materials Science and Technology,
Technische Universität Wien (TU Wien),
Getreidemarkt 9,
Vienna 1060, Austria
e-mail: katja.hoelzl@tuwien.ac.at

Maximilian Tromayer

Austrian Cluster for Tissue Regeneration,
Institute of Applied Synthetic Chemistry,
Technische Universität Wien (TU Wien),
Getreidemarkt 9,
Vienna 1060, Austria
e-mail: maximilian.tromayer@tuwien.ac.at

Peter Gruber

Austrian Cluster for Tissue Regeneration,
Institute of Materials Science and Technology,
Technische Universität Wien (TU Wien),
Getreidemarkt 9, Vienna 1060, Austria
e-mail: peter.e308.gruber@tuwien.ac.at

Sylvia Nürnberger

Austrian Cluster for Tissue Regeneration,
Medical University of Vienna,
Department of Trauma Surgery,
Währinger Gürtel 18-20,
Vienna 1090, Austria
e-mail: sylvia.nuernberger@meduniwien.ac.at

Peter Dubruel

Polymer Chemistry and Biomaterials Research Group,
Ghent University, Krijgslaan 281 S4-bis,
Ghent 9000, Belgium
e-mail: peter.dubruel@UGent.be

Sandra Van Vlierberghe

Polymer Chemistry and Biomaterials Research Group,
Ghent University, Krijgslaan 281 S4-bis,
9000 Ghent, Brussels,
Photonics Team,
Department of Applied Physics and Photonics,
Vrije Universiteit Brussel,
Pleinlaan 2,
Elsene 1050, Belgium
e-mail: sandra.vanvlierberghe@UGent.be

Robert Liska

Austrian Cluster for Tissue Regeneration,
Institute of Applied Synthetic Chemistry
Division of Macromolecular Chemistry,
Technische Universität Wien (TU Wien),
Getreidemarkt 9,
Vienna 1060, Austria
e-mail: robert.liska@tuwien.ac.at

Aleksandr Ovsianikov

Austrian Cluster for Tissue Regeneration,
Institute of Materials Science and Technology,
Technische Universität Wien (TU Wien),
Getreidemarkt 9,
Vienna 1060, Austria
e-mail: aleksandr.ovsianikov@tuwien.ac.at

1Corresponding author.

Manuscript received April 7, 2015; final manuscript received August 25, 2015; published online September 29, 2015. Assoc. Editor: Ibrahim Ozbolat.

J. Nanotechnol. Eng. Med 6(2), 021001 (Sep 29, 2015) (7 pages) Paper No: NANO-15-1029; doi: 10.1115/1.4031466 History: Received April 07, 2015; Revised August 25, 2015

Three-dimensional (3D) printing offers versatile possibilities for adapting the structural parameters of tissue engineering scaffolds. However, it is also essential to develop procedures allowing efficient cell seeding independent of scaffold geometry and pore size. The aim of this study was to establish a method for seeding the scaffolds using photopolymerizable cell-laden hydrogels. The latter facilitates convenient preparation, and handling of cell suspension, while distributing the hydrogel precursor throughout the pores, before it is cross-linked with light. In addition, encapsulation of living cells within hydrogels can produce constructs with high initial cell loading and intimate cell-matrix contact, similar to that of the natural extra-cellular matrix (ECM). Three dimensional scaffolds were produced from poly(lactic) acid (PLA) by means of fused deposition modeling. A solution of methacrylamide-modified gelatin (Gel-MOD) in cell culture medium containing photoinitiator Li-TPO-L was used as a hydrogel precursor. Being an enzymatically degradable derivative of natural collagen, gelatin-based matrices are biomimetic and potentially support the process of cell-induced remodeling. Preosteoblast cells MC3T3-E1 at a density of 10 × 106 cells per 1 mL were used for testing the seeding procedure and cell proliferation studies. Obtained results indicate that produced constructs support cell survival and proliferation over extended duration of our experiment. The established two-step approach for scaffold seeding with the cells is simple, rapid, and is shown to be highly reproducible. Furthermore, it enables precise control of the initial cell density, while yielding their uniform distribution throughout the scaffold. Such hybrid tissue engineering constructs merge the advantages of rigid 3D printed constructs with the soft hydrogel matrix, potentially mimicking the process of ECM remodeling.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Woodfield, T. B. F. , Malda, J. , de Wijn, J. , Péters, F. , Riesle, J. , and van Blitterswijk, C. A. , 2004, “ Design of Porous Scaffolds for Cartilage Tissue Engineering Using a Three-Dimensional Fiber-Deposition Technique,” Biomaterials, 25(18), pp. 4149–4161. [CrossRef] [PubMed]
Roh, J. D. , Nelson, G. N. , Udelsman, B. V. , Brennan, M. P. , Lockhart, B. , Fong, P. M. , Lopez-Soler, R. I. , Saltzman, W. M. , and Breuer, C. K. , 2007, “ Centrifugal Seeding Increases Seeding Efficiency and Cellular Distribution of Bone Marrow Stromal Cells in Porous Biodegradable Scaffolds,” Tissue Eng., 13(11), pp. 2743–2749. [CrossRef] [PubMed]
Bruinink, A. , Siragusano, D. , Ettel, G. , Brandsberg, T. , Brandsberg, F. , Petitmermet, M. , Müller, B. , Mayer, J. , and Wintermantel, E. , 2001, “ The Stiffness of Bone Marrow Cell-Knit Composites is Increased During Mechanical Load,” Biomaterials, 22(23), pp. 3169–3178. [CrossRef] [PubMed]
Sin, L. T. , Rahmat, A. R. , and Rahman, W. A. W. A. , 2012, Polylactic Acid: PLA Biopolymer Technology and Applications, William Andrew, New York.
Karst, D. , and Yang, Y. , 2006, “ Molecular Modeling Study of the Resistance of PLA to Hydrolysis Based on the Blending of PLLA and PDLA,” Polymer, 47(13), pp. 4845–4850. [CrossRef]
Zhu, Y. , Gao, C. , He, T. , Liu, X. , and Shen, J. , 2003, “ Layer-by-Layer Assembly to Modify Poly(L-Lactic Acid) Surface Toward Improving Its Cytocompatibility to Human Endothelial Cells,” Biomacromolecules, 4(2), pp. 446–452. [CrossRef] [PubMed]
Pan, P. , Zhu, B. , Kai, W. , Dong, T. , and Inoue, Y. , 2008, “ Polymorphic Transition in Disordered Poly(L-Lactide) Crystals Induced by Annealing at Elevated Temperatures,” Macromolecules, 41(12), pp. 4296–4304. [CrossRef]
El-Sherbiny, I. M. , and Yacoub, M. H. , 2013, “ Hydrogel Scaffolds for Tissue Engineering: Progress and Challenges,” Global Cardiol. Sci. Pract., 2013(3), pp. 316–342.
Richardson, S. M. , Curran, J. M. , Chen, R. , Vaughan-Thomas, A. , Hunt, J. A. , Freemont, A. J. , and Hoyland, J. A. , 2006, “ The Differentiation of Bone Marrow Mesenchymal Stem Cells Into Chondrocyte-Like Cells on Poly-L-Lactic Acid (PLLA) Scaffolds,” Biomaterials, 27(22), pp. 4069–4078. [CrossRef] [PubMed]
Seppälä, J. , Korhonen, H. , Hakala, R. , and Malin, M. , 2011, “ Photocrosslinkable Polyesters and Poly(Ester Anhydride)S for Biomedical Applications,” Macromol. Biosci., 11(12), pp. 1647–1652. [CrossRef] [PubMed]
Billiet, T. , Vandenhaute, M. , Schelfhout, J. , Van Vlierberghe, S. , and Dubruel, P. , 2012, “ A Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering,” Biomaterials, 33(26), pp. 6020–6041. [CrossRef] [PubMed]
Meng, Q. , Heuzey, M.-C. , and Carreau, P. J. , 2012, “ Control of Thermal Degradation of Polylactide/Clay Nanocomposites During Melt Processing by Chain Extension Reaction,” Polym. Degrad. Stab., 97(10), pp. 2010–2020. [CrossRef]
Melchels, F. P. W. , Feijen, J. , and Grijpma, D. W. , 2009, “ A Poly(D, L-lactide) Resin for the Preparation of Tissue Engineering Scaffolds by Stereolithography,” Biomaterials, 30(23–24), pp. 3801–3809. [CrossRef] [PubMed]
Schagemann, J. C. , Chung, H. W. , Mrosek, E. H. , Stone, J. J. , Fitzsimmons, J. S. , O’Driscoll, S. W. , and Reinholz, G. G. , 2010, “ Poly-Epsilon-Caprolactone/Gel Hybrid Scaffolds for Cartilage Tissue Engineering,” J. Biomed. Mater. Res. A, 93(2), pp. 454–463. [PubMed]
Endres, M. , Hutmacher, D. W. , Salgado, A. J. , Kaps, C. , Ringe, J. , Reis, R. L. , Sittinger, M. , Brandwood, A. , and Schantz, J. T. , 2003, “ Osteogenic Induction of Human Bone Marrow-Derived Mesenchymal Progenitor Cells in Novel Synthetic Polymer–Hydrogel Matrices,” Tissue Eng., 9(4), pp. 689–702. [CrossRef] [PubMed]
Gloria, A. , Causa, F. , De Santis, R. , Netti, P. A. , and Ambrosio, L. , 2007, “ Dynamic-Mechanical Properties of a Novel Composite Intervertebral Disc Prosthesis,” J. Mater. Sci. Mater. Med., 18(11), pp. 2159–2165. [CrossRef] [PubMed]
Holloway, J. L. , Lowman, A. M. , and Palmese, G. R. , 2010, “ Mechanical Evaluation of Poly(Vinyl Alcohol)-Based Fibrous Composites as Biomaterials for Meniscal Tissue Replacement,” Acta Biomater., 6(12), pp. 4716–4724. [CrossRef] [PubMed]
Ovsianikov, A. , Deiwick, A. , Van Vlierberghe, S. , Dubruel, P. , Möller, L. , Dräger, G. , and Chichkov, B. , 2011, “ Laser Fabrication of Three-Dimensional CAD Scaffolds From Photosensitive Gelatin for Applications in Tissue Engineering,” Biomacromolecules, 12(4), pp. 851–858. [CrossRef] [PubMed]
Van Vlierberghe, S. , Samal, S. K. , and Dubruel, P. , 2011, “ Development of Mechanically Tailored Gelatin–Chondroitin Sulphate Hydrogel Films,” Macromol. Symp., 309–310(1), pp. 173–181. [CrossRef]
Rodrigues, S. C. , Salgado, C. L. , Sahu, A. , Garcia, M. P. , Fernandes, M. H. , and Monteiro, F. J. , 2013, “ Preparation and Characterization of Collagen–Nanohydroxyapatite Biocomposite Scaffolds by Cryogelation Method for Bone Tissue Engineering Applications,” J. Biomed. Mater. Res. A, 101A(4), pp. 1080–1094. [CrossRef]
Dainiak, M. B. , Allan, I. U. , Savina, I. N. , Cornelio, L. , James, E. S. , James, S. L. , Mikhalovsky, S. V. , Jungvid, H. , and Galaev, I. Y. , 2010, “ Gelatin–Fibrinogen Cryogel Dermal Matrices for Wound Repair: Preparation, Optimisation and In Vitro Study,” Biomaterials, 31(1), pp. 67–76. [CrossRef] [PubMed]
Vishnoi, T. , and Kumar, A. , 2012, “ Conducting Cryogel Scaffold as a Potential Biomaterial for Cell Stimulation and Proliferation,” J. Mater. Sci. Mater. Med., 24(2), pp. 447–459. [CrossRef] [PubMed]
Chang, K.-H. , Liao, H.-T. , and Chen, J.-P. , 2013, “ Preparation and Characterization of Gelatin/Hyaluronic Acid Cryogels for Adipose Tissue Engineering: In Vitro and In Vivo Studies,” Acta Biomater., 9(11), pp. 9012–9026. [CrossRef] [PubMed]
Schuurman, W. , Khristov, V. , Pot, M. W. , van Weeren, P. R. , Dhert, W. J. A. , and Malda, J. , 2011, “ Bioprinting of Hybrid Tissue Constructs With Tailorable Mechanical Properties,” Biofabrication, 3(2), p. 021001. [CrossRef] [PubMed]
Noe, R. , Henne, A. , and Maase, M. , 2003, “ Acyl- und Bisacylphosphinderivate Acyl and Bisacylphosphine,” Patent Application, Germany.
Abramoff, M. D. , Magalhães, P. J. , and Ram, S. J. , 2004, “ Image Processing With ImageJ,” Biophotonics Int., 11(7), pp. 36–42.
Fedorovich, N. E. , Oudshoorn, M. H. , van Geemen, D. , Hennink, W. E. , Alblas, J. , and Dhert, W. J. A. , 2009, “ The Effect of Photopolymerization on Stem Cells Embedded in Hydrogels,” Biomaterials, 30(3), pp. 344–353. [CrossRef] [PubMed]
Williams, C. G. , Malik, A. N. , Kim, T. K. , Manson, P. N. , and Elisseeff, J. H. , 2005, “ Variable Cytocompatibility of Six Cell Lines With Photoinitiators Used for Polymerizing Hydrogels and Cell Encapsulation,” Biomaterials, 26(11), pp. 1211–1218. [CrossRef] [PubMed]
Lee, B.-H. , Li, B. , and Guelcher, S. A. , 2012, “ Gel Microstructure Regulates Proliferation and Differentiation of MC3T3-E1 Cells Encapsulated in Alginate Beads,” Acta Biomater., 8(5), pp. 1693–1702. [CrossRef] [PubMed]
Nicodemus, G. D. , and Bryant, S. J. , 2008, “ Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications,” Tissue Eng. Part B Rev., 14(2), pp. 149–165. [CrossRef] [PubMed]
Rehmann, M. S. , and Kloxin, A. M. , 2013, “ Tunable and Dynamic Soft Materials for Three-Dimensional Cell Culture,” Soft Matter, 9(29), pp. 6737–6746. [CrossRef] [PubMed]
Kehrer, J. P. , 1993, “ Free Radicals as Mediators of Tissue Injury and Disease,” Crit. Rev. Toxicol., 23(1), pp. 21–48. [CrossRef] [PubMed]
Cadet, J. , Sage, E. , and Douki, T. , 2005, “ Ultraviolet Radiation-Mediated Damage to Cellular DNA,” Mutat. Res., 571(1–2), pp. 3–17. [CrossRef] [PubMed]
Kappes, U. P. , Luo, D. , Potter, M. , Schulmeister, K. , and Rünger, T. M. , 2006, “ Short- and Long-Wave UV Light (UVB and UVA) Induce Similar Mutations in Human Skin Cells,” J. Invest. Dermatol., 126(3), pp. 667–675. [CrossRef] [PubMed]
Fairbanks, B. D. , Schwartz, M. P. , Bowman, C. N. , and Anseth, K. S. , 2009, “ Photoinitiated Polymerization of PEG-Diacrylate With Lithium Phenyl-2,4,6-Trimethylbenzoylphosphinate: Polymerization Rate and Cytocompatibility,” Biomaterials, 30(35), pp. 6702–6707. [CrossRef] [PubMed]
Cheng, J. , Jiang, S. , Gao, Y. , Wang, J. , and Sun, F. , 2014, “ Tuning Gradient Property and Initiating Gradient Photopolymerization of Acrylamide Aqueous Solution of a Hydrosoluble Photocleavage Polysiloxane-Based Photoinitiator,” Polym. Adv. Technol., 25(12), pp. 1412–1418. [CrossRef]
Liu, M. , Li, M.-D. , Xue, J. , and Phillips, D. L. , 2014, “ Time-Resolved Spectroscopic and Density Functional Theory Study of the Photochemistry of Irgacure-2959 in an Aqueous Solution,” J. Phys. Chem. A, 118(38), pp. 8701–8707. [CrossRef] [PubMed]
Bahney, C. S. , Lujan, T. J. , Hsu, C. W. , Bottlang, M. , West, J. L. , and Johnstone, B. , 2011, “ Visible Light Photoinitiation of Mesenchymal Stem Cell-Laden Bioresponsive Hydrogels,” Eur. Cell. Mater., 22, pp. 43–55; Discussion 55. [PubMed]
Hammer, J. , Han, L.-H. , Tong, X. , and Yang, F. , 2014, “ A Facile Method to Fabricate Hydrogels With Microchannel-Like Porosity for Tissue Engineering,” Tissue Eng. Part C Methods, 20(2), pp. 169–176. [CrossRef] [PubMed]
Gandavarapu, N. R. , Alge, D. L. , and Anseth, K. S. , 2014, “ Osteogenic Differentiation of Human Mesenchymal Stem Cells on α5 Integrin Binding Peptide Hydrogels is Dependent on Substrate Elasticity,” Biomater. Sci., 2(3), pp. 352–361. [CrossRef] [PubMed]
Chen, Y.-C. , Su, W.-Y. , Yang, S.-H. , Gefen, A. , and Lin, F.-H. , 2013, “ In Situ Forming Hydrogels Composed of Oxidized High Molecular Weight Hyaluronic Acid and Gelatin for Nucleus Pulposus Regeneration,” Acta Biomater., 9(2), pp. 5181–5193. [CrossRef] [PubMed]
Solchaga, L. A. , Tognana, E. , Penick, K. , Baskaran, H. , Goldberg, V. M. , Caplan, A. I. , and Welter, J. F. , 2006, “ A Rapid Seeding Technique for the Assembly of Large Cell/Scaffold Composite Constructs,” Tissue Eng., 12(7), pp. 1851–1863. [CrossRef] [PubMed]
Pei, M. , Solchaga, L. A. , Seidel, J. , Zeng, L. , Vunjak-Novakovic, G. , Caplan, A. I. , and Freed, L. E. , 2002, “ Bioreactors Mediate the Effectiveness of Tissue Engineering Scaffolds,” J. Off. Publ. Fed. Am. Soc. Exp. Biol., 16(12), pp. 1691–1694.
Griffon, D. J. , Sedighi, M. R. , Schaeffer, D. V. , Eurell, J. A. , and Johnson, A. L. , 2006, “ Chitosan Scaffolds: Interconnective Pore Size and Cartilage Engineering,” Acta Biomater., 2(3), pp. 313–320. [CrossRef] [PubMed]
Lu, L. , Peter, S. J. , Lyman, M. D. , Lai, H. L. , Leite, S. M. , Tamada, J. A. , Uyama, S. , Vacanti, J. P. , Langer, R. , and Mikos, A. G. , 2000, “ In Vitro and In Vivo Degradation of Porous Poly(DL-Lactic-Co-Glycolic Acid) Foams,” Biomaterials, 21(18), pp. 1837–1845. [CrossRef] [PubMed]
Yang, J. , Shi, G. , Bei, J. , Wang, S. , Cao, Y. , Shang, Q. , Yang, G. , and Wang, W. , 2002, “ Fabrication and Surface Modification of Macroporous Poly(L-Lactic Acid) and Poly(L-Lactic-Co-Glycolic Acid) (70/30) Cell Scaffolds for Human Skin Fibroblast Cell Culture,” J. Biomed. Mater. Res., 62(3), pp. 438–446. [CrossRef] [PubMed]
Huang, H. , Ding, Y. , Sun, X. S. , and Nguyen, T. A. , 2013, “ Peptide Hydrogelation and Cell Encapsulation for 3D Culture of MCF-7 Breast Cancer Cells,” PLoS ONE, 8(3), p. e59482. [CrossRef] [PubMed]
Georges, P. C. , and Janmey, P. A. , 2005, “ Cell Type-Specific Response to Growth on Soft Materials,” J. Appl. Physiol., 98(4), pp. 1547–1553. [CrossRef] [PubMed]
Sunyer, R. , Jin, A. J. , Nossal, R. , and Sackett, D. L. , 2012, “ Fabrication of Hydrogels with Steep Stiffness Gradients for Studying Cell Mechanical Response,” PLoS ONE, 7(10), p. e46107. [CrossRef] [PubMed]
Yeung, T. , Georges, P. C. , Flanagan, L. A. , Marg, B. , Ortiz, M. , Funaki, M. , Zahir, N. , Ming, W. , Weaver, V. , and Janmey, P. A. , 2005, “ Effects of Substrate Stiffness on Cell Morphology, Cytoskeletal Structure, and Adhesion,” Cell Motil. Cytoskeleton, 60(1), pp. 24–34. [CrossRef] [PubMed]
Trappmann, B. , and Chen, C. S. , 2013, “ How Cells Sense Extracellular Matrix Stiffness: A Material’s Perspective,” Curr. Opin. Biotechnol., 24(5), pp. 948–953. [CrossRef] [PubMed]
Marklein, R. A. , and Burdick, J. A. , 2009, “ Spatially Controlled Hydrogel Mechanics to Modulate Stem Cell Interactions,” Soft Matter, 6(1), pp. 136–143. [CrossRef]
Chou, Y.-F. , Dunn, J. C. Y. , and Wu, B. M. , 2005, “ In Vitro Response of MC3T3-E1 Preosteoblasts Within Three-Dimensional Apatite-Coated PLGA Scaffolds,” J. Biomed. Mater. Res. B Appl. Biomater., 75B(1), pp. 81–90. [CrossRef]
St-Pierre, J.-P. , Gauthier, M. , Lefebvre, L.-P. , and Tabrizian, M. , 2005, “ Three-Dimensional Growth of Differentiating MC3T3-E1 Pre-Osteoblasts on Porous Titanium Scaffolds,” Biomaterials, 26(35), pp. 7319–7328. [CrossRef] [PubMed]
Qiao, P. , Li, F. , Dong, L. , Xu, T. , and Xie, Q. , 2014, “ Delivering MC3T3-E1 Cells Into Injectable Calcium Phosphate Cement Through Alginate-Chitosan Microcapsules for Bone Tissue Engineering,” J. Zhejiang Univ. Sci. B, 15(4), pp. 382–392. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 2

Influence of different concentrations of I2959 and LiTPO-L on metabolic activity of MC3T3-E1 after 24 hrs and exposed/not exposed to UV light (PrestoBlue Cell Viability assay). All values are presented as % of positive untreated control. The concentrations, which were not significantly different from the I2959 control after 24 hrs of UV treatment (1.12, 0.6, 0.3, 0.15, 0.075 mM Li-TPO-L) were considered to be not cytotoxic (p > 0.05). DMSO control represents cells treated with 50% DMSO for 1 hr (dead cells control), not showing any difference in metabolic activity from the cells treated with 2, 23 mM Li-TPO-L and UV.

Grahic Jump Location
Fig. 1

Schematic overview of seeding the scaffolds with the 10% Gel-MOD loaded with cells. (a) Printing scaffolds with fused deposition modeling technique, (b) prewetting scaffolds with the medium using low pressure vacuum, (c) loading scaffold with cells embedded in 10% Gel-MOD, (d) polymerization of the Gel-MOD using UV light for 10 mins (365 nm, 4 mW/cm2), and (e) imaging the cells in scaffold using LSM.

Grahic Jump Location
Fig. 3

Distribution of MC3T3-E1 in the scaffolds and control pellets at different time points over 36 days. Living cells were stained with calcein and dead cells with propidium iodide. Scale bar represents 200 μm.

Grahic Jump Location
Fig. 4

SEM of PLA scaffold. Image (a) presents SEM of PLA scaffold and (b) PLA scaffold loaded with Gel-MOD. On images (c) and (d) is SEM 36 days after seeding with 10% Gel-MOD loaded with MC3T3-E1 cells. The overview image (c) shows the struts of the scaffold with the gel in between. Cells are growing on the surface of the scaffold and the gel and are embedded inside the gel (d). White arrow points to the cell encapsulated in the gel, black points to the cell stretching on the Gel-MOD.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In