0
Review Articles: Engineering Cell Microenvironment Using Novel Hydrogels

DNA-Based Bulk Hydrogel Materials and Biomedical Application

[+] Author and Article Information
Yanmin Gao

Key Laboratory of Systems Bioengineering,
Ministry of Education,
School of Chemical Engineering
and Technology,
Tianjin University,
Tianjin 300072, China
e-mail: xiaomingao@tju.edu.cn

Hao Qi

Key Laboratory of Systems Bioengineering,
Ministry of Education (Tianjin University);
Collaborative Innovation Center of
Chemical Science and Engineering (Tianjin),
School of Chemical Engineering
and Technology,
Tianjin University,
Tianjin 300072, China
e-mails: haoq@tju.edu.cn; qh_tju@163.com

1Corresponding author.

Manuscript received September 7, 2015; final manuscript received December 17, 2015; published online May 12, 2016. Assoc. Editor: Feng Xu.

J. Nanotechnol. Eng. Med 6(4), 040802 (May 12, 2016) (6 pages) Paper No: NANO-15-1072; doi: 10.1115/1.4032832 History: Received September 07, 2015; Revised December 17, 2015

Being a natural polymer, DNA attracts extensive attention and possesses great potential to open a new way for researches of biomedical or material science. In the past few decades, approaches have been developed to bring DNA into the realm of bulk materials. In this review, we discussed the progresses achieved for fabrication of novel materials with a large physical dimension from the DNA polymer.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Topics: Bulk solids , DNA , Hydrogels
Your Session has timed out. Please sign back in to continue.

References

Amiya, T. , and Tanaka, T. , 1987, “ Phase Transitions in Crosslinked Gels of Natural Polymers,” Macromolecules, 20(5), pp. 1162–1164. [CrossRef]
Costa, D. , Valente, A. J. , Miguel, M. G. , and Queiroz, J. , 2011, “ Gel Network Photodisruption: A New Strategy for the Codelivery of Plasmid DNA and Drugs,” Langmuir, 27(22), pp. 13780–13789. [CrossRef] [PubMed]
Costa, D. , Queiroz, J. , Miguel, M. G. , and Lindman, B. , 2012, “Swelling Behavior of a New Biocompatible Plasmid DNA Hydrogel,” Colloids Surf., B, 92, pp. 106–112. [CrossRef]
Topuz, F. , and Okay, O. , 2009, “Formation of Hydrogels by Simultaneous Denaturation and Cross-Linking of DNA,” Biomacromolecules, 10(9), pp. 2652–2661. [CrossRef] [PubMed]
Costa, D. , Miguel, M. G. , and Lindman, B. , 2010, “Swelling Properties of Cross-Linked DNA Gels,”Adv. Colloid Interface Sci., 158(1–2), pp. 21–31. [CrossRef] [PubMed]
Guo, W. , Qi, X. J. , Orbach, R. , Lu, C. H. , Freage, L. , Mironi-Harpaz, I. , Seliktar, D. , Yang, H. H. , and Willner, I. , 2014, “Reversible Ag+-Crosslinked DNA Hydrogels,” Chem. Commun., 50(31), pp. 4065–4068. [CrossRef]
Tang, H. , Duan, X. , Feng, X. , Liu, L. , Wang, S. , Li, Y. , and Zhu, D. , 2009, “Fluorescent DNA–Poly(phenylenevinylene) Hybrid Hydrogels for Monitoring Drug Release,” Chem. Commun., 6, pp. 641–643. [CrossRef]
Lee, C. K. , Shin, S. R. , Lee, S. H. , Jeon, J. H. , So, I. , Kang, T. M. , Kim, S. I. , Mun, J. Y. , Han, S. S. , Spinks, G. M. , Wallace, G. G. , and Kim, S. J. , 2008, “DNA Hydrogel Fiber With Self-Entanglement Prepared by Using an Ionic Liquid,” Angew. Chem., Int. Ed. Engl., 47(13), pp. 2470–2474. [CrossRef]
Um, S. H. , Lee, J. B. , Park, N. , Kwon, S. Y. , Umbach, C. C. , and Luo, D. , 2006, “Enzyme-catalysed assembly of DNA Hydrogel,” Nat. Mater., 5(10), pp. 797–801. [CrossRef] [PubMed]
Park, N. , Um, S. H. , Funabashi, H. , Xu, J. , and Luo, D. , 2009, “A Cell-Free Protein-Producing Gel,” Nat. Mater., 8(5), pp. 432–437. [CrossRef] [PubMed]
Li, C. , Chen, P. , Shao, Y. , Zhou, X. , Wu, Y. , Yang, Z. , Li, Z. , Weil, T. , and Liu, D. , 2015, “A Writable Polypeptide–DNA Hydrogel with Rationally Designed Multi-modification Sites,” Small, 11(9–10), pp. 1138–1143. [CrossRef] [PubMed]
Zhang, L. , Lei, J. , Liu, L. , Li, C. , and Ju, H. , 2013, “Self-Assembled DNA Hydrogel as Switchable Material for Aptamer-Based Fluorescent Detection of Protein,” Anal. Chem., 85(22), pp. 11077–11082. [CrossRef] [PubMed]
Shin, S. W. , Park, K. S. , Jang, M. S. , Song, W. C. , Kim, J. , Cho, S. W. , Lee, J. Y. , Cho, J. H. , Jung, S. , and Um, S. H. , 2015, “X-DNA Origami-Networked Core-Supported Lipid Stratum,” Langmuir, 31(3), pp. 912–916. [CrossRef] [PubMed]
Seeman, N. C. , 1982, “Nucleic Acid Junctions and Lattices,” J. Theor. Biol., 99(2), pp. 237–247. [CrossRef] [PubMed]
Winfree, E. , Liu, F. , Wenzler, L. A. , and Seeman, N. C. , 1998, “Design and Self-Assembly of Two-Dimensional DNA Crystals,” Nature, 394(6693), pp. 539–544. [CrossRef] [PubMed]
Endo, M. , and Sugiyama, H. , 2011, Current Protocols in Nucleic Acid Chemistry, Wiley, New York, Chap. 12.
Rothemund, P. W. , 2006, “Folding DNA to Create Nanoscale Shapes and Patterns,” Nature, 440(7082), pp. 297–302. [CrossRef] [PubMed]
Zhang, D. Y. , Hariadi, R. F. , Choi, H. M. , and Winfree, E. , 2013, “Integrating DNA Strand-Displacement Circuitry With DNA Tile Self-Assembly,” Nat. Commun., 4, pp. 1965–1975. [PubMed]
Ke, Y. , Ong, L. L. , Sun, W. , Song, J. , Dong, M. , Shih, W. M. , and Yin, P. , 2014, “DNA Brick Crystals With Prescribed Depths,” Nat. Chem., 6(11), pp. 994–1002. [CrossRef] [PubMed]
Martin, J. P. , Paille, P. , Caveriviere, P. , Galaup, J. L. , Fournie, A. , and Gouzi, J. L. , 1990, “Giant Uterine Leiomyoma and Pregnancy. Clinical, Radiologic, Unusual Histopathologic Aspects,” J. Gynecol., Obstet. Biol. Reprod., 19, pp. 315–320.
Endo, M. , Sugita, T. , Rajendran, A. , Katsuda, Y. , Emura, T. , Hidaka, K. , and Sugiyama, H. , 2011, “Two-Dimensional DNA Origami Assemblies Using a Four-Way Connector,” Chem. Commun., 47(11), pp. 3213–3215. [CrossRef]
Rajendran, A. , Endo, M. , Katsuda, Y. , Hidaka, K. , and Sugiyama, H. , 2011, “Photo-Cross-Linking-Assisted Thermal Stability of DNA Origami Structures and Its Application for Higher-Temperature Self-Assembly,” J. Am. Chem. Soc., 133(37), pp. 14488–14491. [CrossRef] [PubMed]
Rajendran, A. , Endo, M. , Katsuda, Y. , Hidaka, K. , and Sugiyama, H. , 2011, “Programmed Two-Dimensional Self-Assembly of Multiple DNA Origami Jigsaw Pieces,” ACS Nano, 5(1), pp. 665–671. [CrossRef] [PubMed]
Jungmann, R. , Scheible, M. , Kuzyk, A. , Pardatscher, G. , Castro, C. E. , and Simmel, F. C. , 2011, “DNA Origami-Based Nanoribbons: Assembly, Length Distribution, and Twist,” Nanotechnology, 22(27), p. 275301. [CrossRef] [PubMed]
Iinuma, R. , Ke, Y. , Jungmann, R. , Schlichthaerle, T. , Woehrstein, J. B. , and Yin, P. , 2014, “Polyhedra Self-Assembled from DNA Tripods and Characterized With 3D DNA-PAINT,” Science, 344(6179), pp. 65–69. [CrossRef] [PubMed]
Zhang, H. , Chao, J. , Pan, D. , Liu, H. , Huang, Q. , and Fan, C. , 2012, “Folding Super-Sized DNA Origami With Scaffold Strands From Long-Range PCR,” Chem. Commun., 48(51), pp. 6405–6407. [CrossRef]
Marchi, A. N. , Saaem, I. , Vogen, B. N. , Brown, S. , and LaBean, T. H. , 2014, “Toward Larger DNA Origami,” Nano Lett., 14(10), pp. 5740–5747. [CrossRef] [PubMed]
Zadeh, J. N. , Steenberg, C. D. , Bois, J. S. , Wolfe, B. R. , Pierce, M. B. , Khan, A. R. , Dirks, R. M. , and Pierce, N. A. , 2011, “NUPACK: Analysis and Design of Nucleic Acid Systems,” J. Comput. Chem., 32(1), pp. 170–173. [CrossRef] [PubMed]
Sharma, J. , Chhabra, R. , Cheng, A. , Brownell, J. , Liu, Y. , and Yan, H. , 2009, “Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles,” Science, 323(5910), pp. 112–116. [CrossRef] [PubMed]
Maune, H. T. , Han, S. P. , Barish, R. D. , Bockrath, M. , Goddard, W. A. , III, Rothemund, P. W. , and Winfree, E. , 2010, “Self-Assembly of Carbon Nanotubes Into Two-Dimensional Geometries Using DNA Origami Templates,” Nat. Nanotechnol., 5(1), pp. 61–66. [CrossRef] [PubMed]
Tu, X. , Manohar, S. , Jagota, A. , and Zheng, M. , 2009, “DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes,” Nature, 460(7252), pp. 250–253. [CrossRef] [PubMed]
Hazarika, P. , Ceyhan, B. , and Niemeyer, C. M. , 2004, “Reversible Switching of DNA–Gold Nanoparticle Aggregation,” Angew. Chem., Int. Ed. Engl., 43(47), pp. 6469–6471. [CrossRef]
Niemeyer, C. M. , Ceyhan, B. , and Hazarika, P. , 2003, “Oligofunctional DNA–Gold Nanoparticle Conjugates,” Angew. Chem., Int. Ed. Engl., 42(46), pp. 5766–5770. [CrossRef]
Macfarlane, R. J. , Lee, B. , Hill, H. D. , Senesi, A. J. , Seifert, S. , and Mirkin, C. A. , 2009, “Assembly and Organization Processes in DNA-Directed Colloidal Crystallization,” Proc. Natl. Acad. Sci. U. S. A., 106(26), pp. 10493–10498. [CrossRef] [PubMed]
Soto, C. M. , Srinivasan, A. , and Ratna, B. R. , 2002, “Controlled Assembly of Mesoscale Structures Using DNA as Molecular Bridges,” J. Am. Chem. Soc., 124(29), pp. 8508–8509. [CrossRef] [PubMed]
Mirkin, C. A. , Letsinger, R. L. , Mucic, R. C. , and Storhoff, J. J. , 1996, “A DNA-Based Method for Rationally Assembling Nanoparticles Into Macroscopic Materials,” Nature, 382(6592), pp. 607–609. [CrossRef] [PubMed]
Hsiao, S. C. , Shum, B. J. , Onoe, H. , Douglas, E. S. , Gartner, Z. J. , Mathies, R. A. , Bertozzi, C. R. , and Francis, M. B. , 2009, “Direct Cell Surface Modification with DNA for the Capture of Primary Cells and the Investigation of Myotube Formation on Defined Patterns,” Langmuir, 25(12), pp. 6985–6991. [CrossRef] [PubMed]
Gartner, Z. J. , and Bertozzi, C. R. , 2009, “Programmed Assembly of 3-Dimensional Microtissues With Defined Cellular Connectivity,” Proc. Natl. Acad. Sci. U. S. A., 106(12), pp. 4606–4610. [CrossRef] [PubMed]
Douglas, E. S. , Chandra, R. A. , Bertozzi, C. R. , Mathies, R. A. , and Francis, M. B. , 2007, “Self-Assembled Cellular Microarrays Patterned Using DNA Barcodes,” Lab Chip, 7(11), pp. 1442–1448. [CrossRef] [PubMed]
Chandra, R. A. , Douglas, E. S. , Mathies, R. A. , Bertozzi, C. R. , and Francis, M. B. , 2006, “Programmable Cell Adhesion Encoded by DNA Hybridization,” Angew. Chem., Int. Ed. Engl., 45(6), pp. 896–901. [CrossRef]
Nykypanchuk, D. , Maye, M. M. , van der Lelie, D. , and Gang, O. , 2008, “DNA-Guided Crystallization of Colloidal Nanoparticles,” Nature, 451(7178), pp. 549–552. [CrossRef] [PubMed]
Xu, Y. , Wu, Q. , Sun, Y. , Bai, H. , and Shi, G. , 2010, “Three-Dimensional Self-Assembly of Graphene Oxide and DNA Into Multifunctional Hydrogels,” ACS Nano, 4(12), pp. 7358–7362. [CrossRef] [PubMed]
Qi, H. , Ghodousi, M. , Du, Y. , Grun, C. , Bae, H. , Yin, P. , and Khademhosseini, A. , 2013, “DNA-Directed Self-Assembly of Shape-Controlled Hydrogels,” Nat. Commun., 4, pp. 2275–2285. [CrossRef] [PubMed]
Lee, J. B. , Peng, S. , Yang, D. , Roh, Y. H. , Funabashi, H. , Park, N. , Rice, E. J. , Chen, L. , Long, R. , Wu, M. , and Luo, D. , 2012, “A Mechanical Metamaterial Made From a DNA Hydrogel,” Nat. Nanotechnol., 7(12), pp. 816–820. [CrossRef] [PubMed]
Zhao, W. , Ali, M. M. , Brook, M. A. , and Li, Y. , 2008, “Rolling Circle Amplification: Applications in Nanotechnology and Biodetection With Functional Nucleic Acids,” Angew. Chem., Int. Ed. Engl., 47(34), pp. 6330–6337. [CrossRef]
Dirks, R. M. , and Pierce, N. A. , 2004, “Triggered Amplification by Hybridization Chain Reaction,” Proc. Natl. Acad. Sci. U. S. A., 101(43), pp. 15275–15278. [CrossRef] [PubMed]
Song, W. , Zhu, K. , Cao, Z. , Lau, C. , and Lu, J. , 2012, “Hybridization Chain Reaction-Based Aptameric System for the Highly Selective and Sensitive Detection of Protein,” Analyst, 137(6), pp. 1396–1401. [CrossRef] [PubMed]
Tomita, N. , Mori, Y. , Kanda, H. , and Notomi, T. , 2008, “Loop-Mediated Isothermal Amplification (LAMP) of Gene Sequences and Simple Visual Detection of Products,” Nat. Protoc., 3(5), pp. 877–882. [CrossRef] [PubMed]
Tao, Z. Y. , Zhou, H. Y. , Xia, H. , Xu, S. , Zhu, H. W. , Culleton, R. L. , Han, E. T. , Lu, F. , Fang, Q. , Gu, Y. P. , Liu, Y. B. , Zhu, G. D. , Wang, W. M. , Li, J. L. , Cao, J. , and Gao, Q. , 2011, “Adaptation of A Visualized Loop-Mediated Isothermal Amplification Technique for Field Detection of Plasmodium Vivax Infection,” Parasites Vectors, 4(1), pp. 115–123. [CrossRef] [PubMed]
Wooldridge, J. E. , and Weiner, G. J. , 2003, “CpG DNA and Cancer Immunotherapy: Orchestrating the Antitumor Immune Response,” Curr. Opin. Oncol., 15(6), pp. 440–445. [CrossRef] [PubMed]
Dalpke, A. H. , and Heeg, K. , 2004, “CpG-DNA as Immune Response Modifier,” Int. J. Med. Microbiol., 294(5), pp. 345–354. [CrossRef] [PubMed]
Rothenfusser, S. , Tuma, E. , Wagner, M. , Endres, S. , and Hartmann, G. , 2003, “Recent Advances in Immunostimulatory CpG Oligonucleotides,” Curr. Opin. Mol. Ther., 5, pp. 98–106. [PubMed]
Blanks, D. A. , 2007, “Immunostimulatory Sequences in Immunotherapy,” Curr. Opin. Otolaryngol. Head Neck Surg., 15(4), pp. 281–285. [CrossRef] [PubMed]
Gibson, D. G. , Glass, J. I. , Lartigue, C. , Noskov, V. N. , Chuang, R. Y. , Algire, M. A. , Benders, G. A. , Montague, M. G. , Ma, L. , Moodie, M. M. , Merryman, C. , Vashee, S. , Krishnakumar, R. , Assad-Garcia, N. , Andrews-Pfannkoch, C. , Denisova, E. A. , Young, L. , Qi, Z. Q. , Segall-Shapiro, T. H. , Calvey, C. H. , Parmar, P. P. , Hutchison, C. A., III , Smith, H. O. , and Venter, J. C. , 2010, “Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome,” Science, 329(5987), pp. 52–56. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

(a) EGDE catalyzed covalent crosslinking between DNA chains. (b) Ag+ ion mediated noncovalent DNA material fabrication and reversed by cysteamine. Adapted from Ref. [6]. (c) Material made from chemically crosslinked DNA and chemical polymer poly(phenylenevinylene). Adapted from Ref. [7]. (d) The process of silk fiber made from condensed DNA in an RTIL. Adapted from Ref. [8]. (e) Ligase enzyme crosslink designed branched DNA block to hydrogel. (Reprinted with permission from Macmillan Publishers, Ltd., Nature Materials, Ref. [9]. Copyright 2006).

Grahic Jump Location
Fig. 2

(a) Schematic representation of DNA tile self-assembly. (b) Schematic representation of DNA origami self-assembly. (c) DNA nanotube with super length up to 10 μm fabricated from rationally designed DNA tiles self-assembly. Adapted from Ref. [18]. (d) DNA crystal with micrometer in the lateral dimensions. Adapted from Ref. [19]. (e) DNA “jigsaw” piece made from DNA origami self-assembly build larger structure. (Reprinted with permission from Rajendran et al. [23]. Copyright 2011 by American Chemical Society). (f)Super-sized DNA origami fold from a genetically modified hybrid lambda/M13 phage genomic DNA of 51,466-nucleotide. Adapted from Ref. [27].

Grahic Jump Location
Fig. 3

(a) Material made from colloidal nanoparticles glued together by designed DNA oligo. Adapted from Ref. [41]. (b) Single-stranded DNA polymer glued nanoscale graphene into hydrogel materials. Adapted from Ref. [42]. (c) Rationally designed massive single-stranded DNA function as molecular glue and mediated self-assembly of the mesoscale hydrogel module in a programmable fashion. (Reprinted with permission from Qi et al. [43]. Copyright 2013 by Nature Publishing Group).

Grahic Jump Location
Fig. 4

(a) Schematic for RCA and MCA mediated DNA hydrogel material fabrication process. Adapted from Ref. [44]. (b) Bulk material made from pure DNA polymer fabricated by a designed cell-free DNA amplification process. Adapted from Ref. [44].

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In