Research Papers: Engineering Cell Microenvironments Using Novel Hydrogels

The Micro/Nanohybrid Structures Enhancing B35 Cell Guidance on Chitosan

[+] Author and Article Information
Ying-Ting Lin

Graduate Institute of Biomedical Engineering,
National Chung-Hsing University,
250 Kuo Kuang Road,
Taichung 40227, Taiwan
e-mail: jeff0213@gmail.com

Ching-Wen Li

Ph.D. Program in Tissue Engineering and
Regenerative Medicine,
National Chung-Hsing University,
250 Kuo Kuang Road,
Taichung 40227, Taiwan
e-mail: fayeshin2@hotmail.com

Gou-Jen Wang

Department of Mechanical Engineering,
Graduate Institute of Biomedical Engineering,
National Chung-Hsing University,
250 Kuo Kuang Road,
Taichung 40227, Taiwan
e-mail: gjwang@dragon.nchu.edu.tw

1Corresponding author.

Manuscript received September 16, 2015; final manuscript received January 4, 2016; published online March 17, 2016. Assoc. Editor: Feng Xu.

J. Nanotechnol. Eng. Med 6(3), 031005 (Mar 17, 2016) (9 pages) Paper No: NANO-15-1082; doi: 10.1115/1.4032602 History: Received September 16, 2015; Revised January 04, 2016

A novel chitosan scaffold with micro- and nano-hybrid structures was proposed in this study. The hemispheric array of the barrier layer of an anodic aluminum oxide (AAO) film was used as the substrate. Microelectromechanical systems and nickel electroforming techniques were integrated for fabricating chitosan scaffolds with different micro/nanohybrid structures. Nerve cells were then cultured on the conduits. It was demonstrated that the scaffold with pure microstructures can guide the nerve cells to grow along the ridges of the microstructure and some cells to grow across the groove in between two ridges of the microstructure. It was also shown that the scaffold with microscale ridges and nanopatterns on the groove between two ridges can more effectively guide the cells to grow along the ridges, thus enhancing the proliferation of nerve cells.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Itoh, S. , Yamaguchi, I. , Suzuki, M. , Ichinose, S. , Takakuda, K. , Kobayashi, H. , Shinomiya, K. , and Tanaka, J. , 2003, “ Hydroxyapatite-Coated Tendon Chitosan Tubes With Adsorbed Laminin Peptides Facilitate Nerve Regeneration In Vivo,” Brain Res., 993(1), pp. 111–123. [CrossRef] [PubMed]
Yamaguchi, I. , Itoh, S. , Suzuki, M. , Osaka, A. , and Tanaka, J. , 2003, “ The Chitosan Prepared From Crab Tendons: II The Chitosan/Apatite Composites and Their Application to Nerve Regeneration,” Biomaterials, 24(19), pp. 3285–3292. [CrossRef] [PubMed]
Farole, A. , and Jamal, B. T. , 2008, “ A Bioabsorbable Collagen Nerve Cuff (NeuraGen) for Repair of Lingual and Inferior Alveolar Nerve Injuries: A Case Series,” J. Oral Maxillofac. Surg., 66(10), pp. 2058–2062. [CrossRef] [PubMed]
Hsu, S. H. , Chen, C. Y. , Lu, P. S. , Lai, C. S. , and Chen, C. J. , 2005, “ Oriented Schwann Cell Growth on Microgrooved Surfaces,” Biotechnol. Bioeng., 92(5), pp. 579–588. [CrossRef] [PubMed]
Bremus-Koebberling, E. A. , Beckemper, S. , Koch, B. , and Gillner, A. , 2012, “ Nano Structures Via Laser Interference Patterning for Guided Cell Growth of Neuronal Cells,” J. Laser Appl., 24(4), p. 042013. [CrossRef]
Yao, L. , Wang, S. , Cui, W. , Sherlock, R. , O’Connell, C. , Damodaran, G. , Gorman, A. , Windebank, A. , and Pandit, A. , 2009, “ Effect of Functionalized Micropatterned PLGA on Guided Neurite Growth,” Acta Biomater., 5(2), pp. 580–588. [CrossRef] [PubMed]
Stevens, M. M. , and George, J. H. , 2005, “ Exploring and Engineering the Cell Surface Interface,” Science, 310(5751), pp. 1135–1138. [CrossRef] [PubMed]
Baranes, K. , Chejanovsky, N. , Alon, N. , Sharoni, A. , and Shefi, O. , 2012, “ Topographic Cues of Nano-Scale Height Direct Neuronal Growth Pattern,” Biotechnol. Bioeng., 109(7), pp. 1791–1797. [CrossRef] [PubMed]
Wang, G. J. , Lin, Y. C. , Li, C. W. , Hsueh, C. C. , Hsu, S. H. , and Hung, H. S. , 2009, “ Fabrication of Orderly Nanostructured PLGA Scaffolds Using Anodic Aluminum Oxide Templates,” Biomed. Microdevices, 11(4), pp. 843–850. [CrossRef] [PubMed]
Jiang, X. , Bruzewicz, D. A. , Wong, A. P. , Piel, M. , and Whitesides, G. M. , 2005, “ Directing Cell Migration With Asymmetric Micropatterns,” Proc. Natl. Acad. Sci. U. S. A., 102(4), pp. 975–978. [CrossRef] [PubMed]
Inaba, R. , Khademhosseini, A. , Suzuki, H. , and Fukuda, J. , 2009, “ Electrochemical Desorption of Self-Assembled Monolayers for Engineering Cellular Tissues,” Biomaterials, 30(21), pp. 3573–3579. [CrossRef] [PubMed]
Dertinger, S. K. , Jiang, X. , Li, Z. , Murthy, V. N. , and Whitesides, G. M. , 2002, “ Gradients of Substrate-Bound Laminin Orient Axonal Specification of Neurons,” Proc. Natl. Acad. Sci., 99(20), pp. 12542–12547. [CrossRef]
Sun, Y. , Liu, Y. , Qu, W. , and Jiang, X. , 2009, “ Combining Nanosurface Chemistry and Microfluidics for Molecular Analysis and Cell Biology,” Anal. Chim. Acta, 650(1), pp. 98–105. [CrossRef] [PubMed]
Liu, W. , Zheng, W. , Yuan, B. , and Jiang, X. , 2013, “ A Micropatterned Coculture System for Axon Guidance Reveals That Slit Promotes Axon Fasciculation and Regulates the Expression of L1CAM,” Integr. Biol., 5(3), pp. 617–623. [CrossRef]
Wilson, N. R. , Ty, M. T. , Ingber, D. E. , Sur, M. , and Liu, G. , 2007, “ Synaptic Reorganization in Scaled Networks of Controlled Size,” J. Neurosci., 27(50), pp. 13581–13589. [CrossRef] [PubMed]
Nam, Y. , Wheeler, B. C. , and Heuschkel, M. O. , 2006, “ Neural Recording and Stimulation of Dissociated Hippocampal Cultures Using Microfabricated Three-Dimensional Tip Electrode Array,” J. Neurosci. Methods, 155(2), pp. 296–299. [CrossRef] [PubMed]
Tsai, J. J. , Bau, I. J. , Chen, H. T. , Lin, Y. T. , and Wang, G. J. , 2011, “ A Novel Nanostructured Biosensor for the Detection of the Dust Mite Antigen Der p2,” Int. J. Nanomed., 6, pp. 1201–1208.
Chung, I. C. , Li, C. W. , and Wang, G. J. , 2013, “ The Influence of Different Nanostructured Scaffolds on Fibroblast Growth,” Sci. Technol. Adv. Mater., 14(4), p. 044401. [CrossRef]
Patz, T. M. , Doraiswamy, A. , Narayan, R. J. , He, W. , Zhong, Y. , Bellamkonda, R. , Modi, R. , and Chrisey, D. B. , 2006, “ Three-Dimensional Direct Writing of B35 Neuronal Cells,” J. Biomed. Mater. Res., Part B, 78(1), pp. 124–130. [CrossRef]
Doraiswamy, A. , Patz, T. , Narayan, R. J. , Dinescu, M. , Modi, R. , Auyeung, R. C. Y. , and Chrisey, D. B. , 2006, “ Two-Dimensional Differential Adherence of Neuroblasts in Laser Micromachined CAD/CAM Agarose Channels,” Appl. Surf. Sci., 252(13), pp. 4748–4753. [CrossRef]
Khan, S. P. , Auner, G. G. , and Newaz, G. M. , 2005, “ Influence of Nanoscale Surface Roughness on Neural Cell Attachment on Silicon,” Nanomed.: Nanotechnol., Biol. Med., 1(2), pp. 125–129. [CrossRef]
Siddiqui, M. A. , Ahamed, M. , Ahmad, J. , Khan, M. M. , Musarrat, J. , Al-Khedhairy, A. A. , and Alrokayan, S. A. , 2012, “ Nickel Oxide Nanoparticles Induce Cytotoxicity, Oxidative Stress and Apoptosis in Cultured Human Cells That is Abrogated by the Dietary Antioxidant Curcumin,” Food Chem. Toxicol., 50(3), pp. 641–647. [CrossRef] [PubMed]
Kim, D. H. , Provenzano, P. P. , Smith, C. L. , and Levchenko, A. , 2012, “ Matrix Nanotopography as a Regulator of Cell Function,” J. Cell Biol., 197(3), pp. 351–360. [CrossRef] [PubMed]
Watt, F. M. , and Huck, W. T. , 2013, “ Role of the Extracellular Matrix in Regulating Stem Cell Fate,” Nat. Rev. Mol. Cell Biol., 14(8), pp. 467–473. [CrossRef] [PubMed]
Cai, L. , Zhang, L. , Dong, J. , and Wang, S. , 2012, “ Photocured Biodegradable Polymer Substrates of Varying Stiffness and Microgroove Dimensions for Promoting Nerve Cell Guidance and Differentiation,” Langmuir, 28(34), pp. 12557–12568. [CrossRef] [PubMed]
Bechara, S. , and Popat, K. C. , 2013, “ Micro-Patterned Nanowire Surfaces Encourage Directional Neural Progenitor Cell Adhesion and Proliferation,” J. Biomed. Nanotechnol., 9(10), pp. 1698–1706. [CrossRef] [PubMed]
Goldner, J. S. , Bruder, J. M. , Li, G. , Gazzola, D. , and Hoffman-Kim, D. , 2006, “ Neurite Bridging Across Micropatterned Grooves,” Biomaterials, 27(3), pp. 460–472. [CrossRef] [PubMed]
Sun, Y. , Huang, Z. , Yang, K. , Liu, W. , Xie, Y. , Yuan, B. , Zhang, W. , and Jiang, X. , 2011, “ Self-Organizing Circuit Assembly Through Spatiotemporally Coordinated Neuronal Migration Within Geometric Constraints,” PLoS One, 6(11), p. e28156. [CrossRef] [PubMed]
Chung, B. G. , Flanagan, L. A. , Rhee, S. W. , Schwartz, P. H. , Lee, A. P. , Monuki, E. S. , and Jeon, N. L. , 2005, “ Human Neural Stem Cell Growth and Differentiation in a Gradient-Generating Microfluidic Device,” Lab Chip, 5(4), pp. 401–406. [CrossRef] [PubMed]
Rhee, S. W. , Taylor, A. M. , Tu, C. H. , Cribbs, D. H. , Cotman, C. W. , and Jeon, N. L. , 2005, “ Patterned Cell Culture Inside Microfluidic Devices,” Lab Chip, 5(1), pp. 102–107. [CrossRef] [PubMed]
Sun, T. , Yu, N. , Zhai, L. K. , Li, N. , Zhang, C. , Zhou, L. , Huang, Z. , Jiang, X. Y. , Shen, Y. , and Chen, Z. Y. , 2013, “ NH2-Terminal Kinase (JNK)-Interacting Protein-3 (JIP3) Regulates Neuronal Axon Elongation in a Kinesin-and JNK-Dependent Manner,” J. Biol. Chem., 288(20), pp. 14531–14543. [CrossRef] [PubMed]
Xie, J. , MacEwan, M. R. , Li, X. , Sakiyama-Elbert, S. E. , and Xia, Y. , 2009, “ Neurite Outgrowth on Nanofiber Scaffolds With Different Orders, Structures, and Surface Properties,” ACS Nano, 3(5), pp. 1151–1159. [CrossRef] [PubMed]
Kang, K. , Choi, S. E. , Jang, H. S. , Cho, W. K. , Nam, Y. , Choi, I. S. , and Lee, J. S. , 2012, “ In Vitro Developmental Acceleration of Hippocampal Neurons on Nanostructures of Self-Assembled Silica Beads in Filopodium-Size Ranges,” Angew. Chem., Int. Ed., 51(12), pp. 2855–2858. [CrossRef]
Kim, D. H. , and Wirtz, D. , 2013, “ Focal Adhesion Size Uniquely Predicts Cell Migration,” FASEB J., 27(4), pp. 1351–1361. [CrossRef] [PubMed]
Lamers, E. , Horssen, R. V. , Riet, J. T. , Delft, F. V. , Luttge, R. , Walboomers, X. F. , and Jansen, J. A. , 2010, “ The Influence of Nanoscale Topographical Cues on Initial Osteoblast Morphology and Migration,” Eur. Cells Mater., 20, pp. 329–343.


Grahic Jump Location
Fig. 1

Schematic of fabrication process of chitosan scaffold with micro/nanohybrid patterns: (a) AAO barrier-layer template preparation, (b) spinning coating of photoresist, (c) ultraviolet exposure, (d) development, (e) nano-electroforming, and (f) chitosan casting and demoding

Grahic Jump Location
Fig. 2

Surface morphology of barrier-layer surface of AAO membrane: (a) SEM image of the ordered nanohemisphere array of fabricated AAO barrier layer and (b) measurement of height and diameter of nanohemisphere using AFM

Grahic Jump Location
Fig. 3

Micropatterns with different groove/ridge combinations transferred onto AAO barrier-layer and silicon substrates via photolithography. The ridge/groove combinations are (a) and (d) 30/30, (b) and (e) 30/50, and (c) and (f) 30/100 (unit: μm).

Grahic Jump Location
Fig. 4

SEM and AFM images of micro/nanohybrid pattern on AAO barrier-layer substrate: (a) SEM image of micropattern defined on AAO barrier-layer substrate via photolithography and (b) AFM image showing complete removal of photoresist

Grahic Jump Location
Fig. 5

Nickel molds with different micro/nanopattern combinations fabricated via electroforming using AAO barrier-layer template. The ridge/groove combinations are (a) and (d) 30/30, (b) and (e) 30/50, and (c) and (f) 30/100 (unit: μm).

Grahic Jump Location
Fig. 6

Chitosan scaffolds with different micro/nanopattern combinations. (a)–(c) Scaffolds with nanostructures. The ridge/groove combinations are (a) and (d) 30/30, (b) and (e) 30/50, and (c) and (f) 30/100 (unit: μm).

Grahic Jump Location
Fig. 7

Proliferation rates of B35 cells cultured on different chitosan scaffolds. Note that the asterisk symbol indicates that p < 0.05 when compared with pure nanostructure and cell proliferation rate (number of cells on micro, nano, micro/nanohybrid structured chitosan scaffold or flat chitosan membrane/number of cells on flat chitosan membrane). The values are expressed as mean value ± standard deviation.

Grahic Jump Location
Fig. 8

Comparison of cell morphologies of B35 cells cultured on a chitosan membrane of pure nanosphere array and a flat chitosan membrane (scale bar: 100 μm)

Grahic Jump Location
Fig. 9

Cell morphologies of B35 cells cultured on different chitosan scaffolds with pure micropatterns. The cells tend to grow along the ridges of the micropattern. Some cells, especially those cultured on 30/50 and 30/100 micropatterns, grow from one ridge across the groove to the neighboring ridges. White arrows: cell crossed to another pattern (indicated by rectangular boxes) (scale bar: 100 μm).

Grahic Jump Location
Fig. 10

Cell morphologies of B35 cells cultured on chitosan scaffolds with micro/nanohybrid structures (nanostructure on the groove). The conduits can more effectively guide cells to grow along the ridges (scale bar: 100 μm).

Grahic Jump Location
Fig. 11

Cell morphologies of B35 cells cultured on reversed micro/nanohybrid structured chitosan scaffolds (nanostructure on the ridges). Note that no obvious guidance of cell growth direction can be observed (scale bar: 100 μm).



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In