Abstract
Ultrasound is a safe, noninvasive diagnostic technique used to measure internal structures such as blood vessels and the velocity of blood flow in the human body. The ability to continuously measure blood flow in major cerebral arteries would enable the early detection of medical problems such as stroke. However, current ultrasound technology consists of rigid, hand-held probes that are arduous to use, sensitive to movement, and are primarily designed for intermittent, instead of continuous use. Here, we describe the design of a wearable ultrasound patch for continuously measuring blood flow velocity through the middle cerebral artery (MCA) that can be assessed from the temple region of the head. The wearable ultrasound patch is composed of an array of piezoelectric elements that are wired together using flexible electrical conductors and encapsulated in an elastic substrate. To improve ultrasound energy transfer, a soft and conformal composite matching layer is introduced. The matching layer consists of gallium-based liquid metal (LM) microdroplets dispersed in a silicone elastomer. The acoustic impedance of the matching layer can be tuned by varying the volume loading of LM. The wearable ultrasound patch will provide new opportunities to continuously measure blood flow velocity and ultimately enable early detection of medical problems such as stroke.