The consequences of a dynamic fracture in a gas-transmission pipeline require that pipelines be designed to avoid such incidents at a high level of certainty. For this reason, the related phenomonology has been studied since the early 1970s when the possibility of a dynamic ductile fracture was recognized. Full-scale experiments were done to characterize the fracture and gas dynamics associated with this process and empirical models were developed as a means to represent these experiments in a design or analysis setting. Such experiments focused on pure methane gas, and in the early days used steels with toughnesses less than 100 J, consistent with the steel making capabilities of the 1970s. Subsequently, interest shifted to larger diameter, higher pressure, higher BTU “rich” gases requiring higher toughness steels. The full-scale tests conducted to validate the arrest toughness levels determined that these empirical models were non-conservative.

This paper presents a relationship between the dynamic crack propagation resistance and the apparent crack propagation resistance as measured by Charpy vee-notch (CVN) test specimens. This relationship is used in conjunction with the existing Battelle empirical criterion for dynamic-fracture arrest to determine the apparent toughness required to arrest a propagating ductile fracture in gas-transmission pipelines. The validity of this relationship is illustrated by successful predictions of arrest toughness in pipelines under a range of conditions including rich gases and high-toughness steels, including those showing a rising upper-shelf behavior.

This content is only available via PDF.