An experimental investigation of condensation heat transfer and pressure drop of ammonia flowing through a single, circular, microchannel (D = 1.435 mm) was conducted. The use of ammonia in thermal systems is attractive due to its high latent heat, favorable transport properties, zero ozone depletion (ODP), and zero global warming potential (GWP). At the same time, microchannel condensers are also being adopted to increase heat transfer performance to reduce component size and improve energy efficiency. While there is a growing body of research on condensation of conventional refrigerants (i.e., R134a, R404A, etc.) in microchannels, there are few data on condensation of ammonia at the microscale. Ammonia has significantly different fluid properties than synthetic HFC and HCFC refrigerants. For example, at Tsat = 60°C, ammonia has a surface tension 3.2 times and an enthalpy of vaporization 7.2 times greater than those of R134a. Thus, models validated with data for synthetic refrigerants may not predict condensation of ammonia with sufficient accuracy.
The test section consisted of a stainless steel tube-in-tube heat exchanger with ammonia flowing through a microchannel inner tube and cooling water flowing through the annulus in counterflow. A high flow rate of water was maintained to provide an approximately isothermal heat sink and to ensure the condensation thermal resistance dominated the heat transfer process. Data were obtained at mass fluxes of 75 and 150 kg m−2 s−1, multiple saturation temperatures, and in small quality increments (Δx∼15–25%) from 0 to 1. Trends in heat transfer coefficients and pressure drops are discussed and the results are used to assess the applicability of models developed for both macro and microscale geometries for predicting the condensation of ammonia.