Abstract

Prediction of shallow water low frequency (LF) motions of vessels in the context of mooring analysis is challenging. Model tests are often performed to calibrate and validate numerical models and, in this way, reduce the uncertainty. Model tests are part of the positioning system qualifying process. However, model tests also present challenges and uncertainties related to parasitic low frequency wave systems which are unavoidable in shallow water ocean basin conditions.

The paper presents model tests with a ship moored in shallow water (20 m), the analysis and discussion of the test data and comparisons with numerical predictions. The focus is on the low frequency motions and related wave drift forces. The tests have been performed in harmonic waves, bi-harmonic waves and irregular seastates, including conditions with and without current. The first part of the study consists of analysing the wave field measured by a long array of wave sensors distributed along the ocean basin. The analysis provides split wave systems, namely the low frequency components including the bound wave, the incoming free parasitic wave, the reflected component and additional very long waves. The second part proposes a method to calibrate and validate mooring analysis numerical models, based on comparisons with model test data which includes the unavoidable effects from parasitic waves. Simulations of LF motions with the calibrated model show a good agreement with the measurements.

This content is only available via PDF.
You do not currently have access to this content.