A cohesive interface element is presented for the finite element analysis of crack growth in thin specimens. In this work, the traditional cohesive interface model is extended to handle cracks in the context of three-dimensional shell elements. In addition to the traction-displacement law, a bending moment-rotation relation is included to transmit the moment and describe the initiation and propagation of cracks growing through the thickness of the shell elements. Since crack initiation and evolution are a natural outcome of the cohesive zone model without the need of any ad hoc fracture criterion, this model results in automatic prediction of fracture. In particular, this paper will focus on cases involving mode I/III fracture and bending, typical of complex cases existing in industrial applications in which thin-walled structures are subjected to extreme loading conditions (e.g., crashworthiness analysis). Finally, we will discuss how the three-dimensional effects near the crack front may affect the determination of the cohesive parameters to be used with this model.

1.
Barenblatt
,
G. I.
, 1962, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
0065-2156,
7
, pp.
55
129
.
2.
Dugdale
,
D. S.
, 1959, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
100
104
.
3.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
, 1992, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
1377
1397
.
4.
Xu
,
X.-P.
, and
Needleman
,
A.
, 1994, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
0022-5096,
42
(
9
), pp.
1397
1434
.
5.
Camacho
,
G.
, and
Ortiz
,
M.
, 1966, “
Computational Modeling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
2899
2938
.
6.
Espinosa
,
H. D.
,
Zavattieri
,
P. D.
, and
Dwivedi
,
S.
, 1998, “
A Finite Deformation Continuum/Discrete Model for the Description of Fragmentation and Damage in Brittle Materials
,”
J. Mech. Phys. Solids
0022-5096,
46
(
10
), pp.
1909
1942
.
7.
Zavattieri
,
P. D.
, and
Espinosa
,
H. D.
, 2001, “
Grain Level Analysis of Ceramic Microstructures Subjected to Normal Impact Loading
,”
Acta Mater.
1359-6454,
49
(
20
), pp.
4291
4311
.
8.
Klein
,
P. A.
,
Foulk
,
J. W.
,
Chen
,
E. P.
,
Wimmer
,
S. A.
, and
Gao
,
H.
, 2001, “
Physics-Based Modeling of Brittle Fracture: Cohesive Formulations and the Application of Meshfree Methods
,”
Theor. Appl. Fract. Mech.
0167-8442,
37
(
1–3
), pp.
99
166
.
9.
Moes
,
N.
, and
Belytschko
,
T.
, 2002, “
Extended Finite Element Method for Cohesive Crack Growth
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
813
833
.
10.
De Borst
,
R.
, 2003, “
Numerical Aspects of Cohesive-Zone Models
,”
Eng. Fract. Mech.
0013-7944,
70
(
14
), pp.
1743
1757
.
11.
Ortiz
,
M.
, and
Pandolfi
,
A.
, 1999, “
Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack-Propagation Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
44
, pp.
1267
1282
.
12.
Pandolfi
,
A.
,
Guduru
,
P. R.
,
Ortiz
,
M.
, and
Rosakis
,
A. J.
, 2000, “
Three Dimensional Cohesive-Element Analysis and Experiments of Dynamic Fracture in C300 Steel
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
3733
3760
.
13.
Zhou
,
F.
, and
Molinari
,
J. F.
, 2004, “
Dynamic Crack Propagation With Cohesive Elements: a Methodology to Address Mesh Dependency
,”
Int. J. Numer. Methods Eng.
0029-5981,
59
, pp.
1
24
.
14.
Roychowdhury
,
S.
,
Arun Roy
,
Y. D.
, and
Dodds
,
R. H.
, Jr.
, 2002, “
Ductile Tearing in Thin Aluminum Panels: Experiments and Analices Using Large-Displacement, 3-D Surface Cohesive Elements
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
983
1002
.
15.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B. G.
, 2000,
Nonlinear Finite Elements for Continua and Structures
,
John Wiley & Sons, Ltd.
,
New York
.
16.
Li
,
W.
, and
Siegmund
,
T.
, 2002, “
An Analysis of Crack Growth in Thin-Sheet Metal via a Cohesive Zone Model
,”
Eng. Fract. Mech.
0013-7944,
69
(
18
), pp.
2073
2093
.
17.
Cirak
,
F.
,
Ortiz
,
M.
, and
Pandolfi
,
A.
, 2005, “
A Cohesive Approach to Thin-Shell Fracture and Fragmentation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
(
21–24
), pp.
2604
2618
.
18.
Belytschko
,
T.
, 1984, “
Explicit Algorithms for Nonlinear Dynamics of Shells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
43
, pp.
251
276
.
19.
Lin
,
J.
, 1998, “
DYNA3D: A Nonlinear, Explicit, Three-Dimensional Finite Element Code for Solid and Structural Mechanics. User Manual
,” MDGME, LLNL.
20.
Mindlin
,
R. D.
, 1951, “
Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
ASME J. Appl. Mech.
0021-8936,
18
, pp.
31
38
.
21.
Rice
,
J. R.
, and
Levy
,
N.
, 1972, “
The Part-Through Surface Crack in an Elastic Plate
,”
ASME J. Appl. Mech.
0021-8936,
39
, pp.
185
194
.
22.
Parks
,
D. M.
, and
White
,
C. S.
, 1982, “
Elastic-Plastic Line-Spring Finite-Elements for Surface-Cracked Plates and Shells
,”
ASME J. Pressure Vessel Technol.
0094-9930,
104
, pp.
287
292
.
23.
Gullerud
,
A. S.
,
Dodds
,
R. H.
Jr.
,
Hampton
,
R. W.
, and
Dawicke
,
D. S.
, 1999, “
Three-Dimensional Modeling of Dutile Crack Growth in Thin Sheet Metals: Computational Aspects and Validation
,”
Eng. Fract. Mech.
0013-7944,
63
, pp.
347
374
.
24.
Rice
,
R. J.
, 1980, “
The Mechanics of Earthquake Rupture
,” in
Physics of the Earth’s Interior
,
A. M.
Dziewonski
and
E.
Boschi
, eds.,
Italian Physical Society/North-Holland Publ. Co
,
Amsterdam
, pp.
555
649
.
25.
Mahgoub
,
E.
,
Deng
,
X.
, and
Sutton
,
M. A.
, 2003, “
Three-Dimensional Stress and Deformation Fields Around Flat and Slant Cracks Under Remote Mode I Loading Conditions
Eng. Fract. Mech.
0013-7944,
70
(
18
), pp.
2527
2542
.
26.
Chen
,
C. R.
,
Kolednik
,
O.
,
Scheider
,
I.
,
Siegmund
,
T.
,
Tatschl
,
A.
, and
Fischer
,
F. D.
, 2003, “
On the Determination of the Cohesive Zone Parameters for the Modeling of Micro-Ductile Crack Growth in Thick Specimens
,”
Int. J. Fract.
0376-9429,
120
, pp.
517
536
.
27.
Chen
,
C. R.
, and
Kolednik
,
O.
, 2005, “
Comparison of Cohesive Zone Parameters and Crack Tip Stress States Between Two Different Specimen Types
,”
Int. J. Fract.
0376-9429,
132
, pp.
135
152
.
28.
Chen
,
C. R.
,
Kolednik
,
O.
,
Heerens
,
J.
, and
Fischer
,
F. D.
, 2005, “
Three-Dimensional Modeling of Ductile Crack Growth: Cohesive Zone Parameters and Crack Tip Triaxility
,”
Eng. Fract. Mech.
0013-7944,
72
(
13
), pp.
2072
2094
.
29.
Kwon
,
S. W.
, and
Sun
,
C. T.
, 2000, “
Characteristics of Three-Dimensional Stress Fields in Plates With a Though-the-Thickness Crack
,”
Int. J. Fract.
0376-9429,
104
, pp.
291
315
.
30.
Mathur
,
K. K.
,
Needleman
,
A.
, and
Tvergaard
,
V.
, 1996, “
Three Dimensional Analysis of Dynamic Ductile Crack Growth in a Thin Plate
,”
J. Mech. Phys. Solids
0022-5096,
44
(
3
), pp.
439
464
.
You do not currently have access to this content.