A multifield continuum is adopted to grossly describe the dynamical behavior of composite microcracked solids. The constitutive relations for the internal and external (inertial) actions are obtained using a multiscale modeling based on the hypotheses of the classical molecular theory of elasticity and the ensuing overall elastodynamic properties allow us to take properly into account the microscopic features of these materials. Referring to a one-dimensional microcracked bar, the ability of such a continuum to reveal the presence of internal heterogeneities is investigated by analyzing the relevant dispersive wave propagation properties. Scattering of traveling waves is shown to be associated with the microcrack density in the bar.
1.
Rapaport
, D. C.
, 1995, The Art of Molecular Dynamics Simulation
, Cambridge University Press
, Cambridge
.2.
Rhee
, M.
, Zbib
, H. M.
, Hirth
, J. P.
, Huang
, H.
, and de la Rubia
, T.
, 1998, “Models for Long/Short Range Interactions and Cross Slip in 3D Dislocation Simulation of BCC Single Crystals
,” Modell. Simul. Mater. Sci. Eng.
0965-0393, 6
, pp. 467
–492
.3.
Pugno
, N.
, Carpinteri
, A.
, Ippolito
, M.
, Mattoni
, A.
, and Colombo
, L.
, 2008, “Atomistic Fracture: QFM vs. MD
,” Eng. Fract. Mech.
0013-7944, 75
, pp. 1794
–1803
.4.
Sanchez-Palencia
, E.
and Zaoui
, A.
, eds., 1985, Homogenization Techniques for Composite Media
(Lecture Notes in Physics
, Vol. 272
), Springer-Verlag
, Berlin
.5.
Nemat-Nasser
, S.
, and Hori
, M.
, 1993, Micromechanics: Overall Properties of Heterogeneous Materials
, Elsevier
, Amsterdam
.6.
Ostoja-Starzewski
, M.
, Du
, X.
, Khisaeva
, Z. F.
, and Li
, W.
, 2007, “Comparison of the Size of the Representative Volume Element in Elastic, Plastic, Thermoelastic, and Permeable Random Microstructures
,” Int. J. Multiscale Comp. Eng.
1543-1649, 5
(2
), pp. 73
–82
.7.
Ostoja-Starzewski
, M.
, 2008, Microstructural Randomness and Scaling in Mechanics of Materials
, Taylor & Francis
, Boca Raton, FL
.8.
Geymonat
, G.
, Muller
, G.
, and Triantafyllidis
, N.
, 1993, “Homogenization of Non-Linearly Elastic Materials, Microscopic Bifurcation and Macroscopic Loss of Rank-One Convexity
,” Arch. Ration. Mech. Anal.
0003-9527, 122
, pp. 231
–290
.9.
Ponte Castañeda
, P.
, and Suquet
, P.
, 1997, “Nonlinear Composites
,” Adv. Appl. Mech.
0065-2156, 34
, pp. 171
–302
.10.
Trovalusci
, P.
, and Masiani
, R.
, 1999, “Material Symmetries of Micropolar Continua Equivalent to Lattices
,” Int. J. Solids Struct.
0020-7683, 36
(14
), pp. 2091
–2108
.11.
Trovalusci
, P.
, and Masiani
, R.
, 2003, “Non-Linear Micropolar and Classical Continua for Anisotropic Discontinuous Materials
,” Int. J. Solids Struct.
0020-7683, 40
(5
), pp. 1281
–1297
.12.
Trovalusci
, P.
, and Masiani
, R.
, 2005, “A Multi-Field Model for Blocky Materials Based on Multiscale Description
,” Int. J. Solids Struct.
0020-7683, 42
, pp. 5778
–5794
.13.
Muki
, R.
, and Sternberg
, E.
, 1965, “The Influence of Couple-Stresses on Singular Stress Concentrations in Elastic Solids
,” Z. Angew. Math. Phys.
0044-2275, 16
, pp. 611
–648
.14.
Banks
, C. B.
, and Sokolowski
, M.
, 1968, “On Certain Two-Dimensional Applications of the Couple Stress Theory
,” Int. J. Solids Struct.
0020-7683, 4
, pp. 15
–29
.15.
Read
, H. E.
, and Hegemier
, G. A.
, 1984, “Strain Softening of Rock, Soil and Concrete—A Review Article
,” Mech. Mater.
0167-6636, 3
, pp. 271
–294
.16.
Sluys
, L. J.
, de Borst
, R.
, and Mühlhaus
, H. -B.
, 1993, “Wave Propagation, Localization and Dispersion in a Gradient-Dependent Medium
,” Int. J. Solids Struct.
0020-7683, 30
(9
), pp. 1153
–1171
.17.
Smyshlyaev
, V. P.
, and Cherednichenko
, K. D.
, 2000, “On Rigorous Derivation of Strain Gradient Effects in the Overall Behaviour of Periodic Heterogeneous Media
,” J. Mech. Phys. Solids
0022-5096, 48
(6–7
), pp. 1325
–1357
.18.
Kouznetsova
, V. G.
, Geers
, M. G. D.
, and Brekelmans
, W. A. M.
, 2004, “Multi-Scale Second Order Computational Homogenization of Multi-Phase Materials: A Nested Finite Element Solution Strategy
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 193
, pp. 5525
–5550
.19.
Gurtin
, M. E.
, 1965, “Thermodynamics and the Possibility of Spatial Interaction in Elastic Materials
,” Arch. Ration. Mech. Anal.
0003-9527, 19
, pp. 339
–352
.20.
Ostoja-Starzewski
, M.
, Boccara
, S. D.
, and Jasiuk
, I.
, 1999, “Couple-Stress Moduli and Characteristic Length of a Two-Phase Composite
,” Mech. Res. Commun.
0093-6413, 26
(4
), pp. 387
–396
.21.
Forest
, S.
, Pradel
, F.
, and Sab
, K.
, 2001, “Asymptotic Analysis of Heterogeneous Cosserat Media
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 4585
–4608
.22.
Onck
, P. R.
, 2002, “Cosserat Modelling of Cellular Solids
,” C. R. Mec.
1631-0721, 330
, pp. 717
–722
.23.
Peerlings
, R. H. J.
, and Fleck
, N. A.
, 2004, “Computational Evaluation of Strain Gradient Elasticity Constants
,” Int. J. Multiscale Comp. Eng.
1543-1649, 2
(4
), pp. 599
–619
.24.
Trovalusci
, P.
, and Augusti
, G.
, 1998, “A Continuum Model With Microstructure for Materials With Flaws and Inclusions
,” J. Phys. IV
1155-4339, 8
, pp. Pr8
-383– Pr8-390
.25.
Mariano
, P. M.
, and Trovalusci
, P.
, 1999, “Constitutive Relations for Elastic Microcracked Bodies: From a Lattice Model to a Multifield Continuum Description
,” Int. J. Damage Mech.
1056-7895, 8
, pp. 153
–173
.26.
Sansalone
, V.
, Trovalusci
, P.
, and Cleri
, F.
, 2006, “Multiscale Modelling of Materials by a Multifield Approach: Microscopic Stress and Strain Distribution in Fiber-Matrix Composites
,” Acta Mater.
1359-6454, 54
(13
), pp. 3485
–3492
.27.
Sansalone
, V.
, and Trovalusci
, P.
, 2007, “A Numerical Investigation of Structure–Property Relations in Fibre Composite Materials
,” Int. J. Multiscale Comp. Eng.
1543-1649, 5
(2
), pp. 141
–152
.28.
Trovalusci
, P.
, and Rega
, G.
, 2007, “Elastic Waves in Heterogeneous Materials as in Multiscale-Multifield Continua
,” Proc. Est. Acad. Sci., Phys., Math.
1406-0086, 56
(2
), pp. 100
–107
.29.
Voigt
, W.
, 1887, “Theoretische Studien über die Elasticitätsverhältnisse der Kristalle
,” Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen, XXXIV.30.
Poincaré
, H.
, 1892, Leçons sur la Théorie de l’Elasticité
, Carré, Paris.31.
Voigt
, W.
, 1910, Lehrbuch der Kristallphysik
, B.G. Teubner
, Leipzig
.32.
Trovalusci
, P.
, Capecchi
, D.
, and Ruta
, G.
, 2009, “Genesis of the Multiscale Approach for Materials With Microstructure
,” Arch. Appl. Mech.
0939-1533, 79
, pp. 981
–997
.33.
Askar
, A.
, 1985, Lattice Dynamical Foundation of Continuum Theories
, World Scientific
, Singapore
.34.
Ericksen
, J. L.
, 1977, “Special Topics in Elastostatics
,” Advances in Applied Mechanics
, C. -S.
Yih
, ed., Academic
, New York
, Vol. 17
, pp. 189
–241
.35.
Kunin
, A.
, 1982, Elastic Media With Microstructure-I (One-Dimensional Models)
, Springer-Verlag
, Berlin
.36.
Fago
, M.
, Hayes
, R. L.
, Carter
, E. A.
, and Ortiz
, M.
, 2004, “Density-Functional-Theory-Based Local Quasicontinuum Method: Prediction of Dislocation Nucleation
,” Phys. Rev. B
0163-1829, 70
, p. 100102
.37.
Bardenhagen
, S. G.
, and Triantafyllidis
, N.
, 1994, “Derivation of Higher Order Gradient Continuum Theories in 2,3-D Non-Linear Elasticity From Periodic Lattice Models
,” J. Mech. Phys. Solids
0022-5096, 42
, pp. 111
–139
.38.
Miller
, R. E.
, and Tadmor
, E. B.
, 2002, “The Quasicontinuum Method: Overview, Applications and Current Directions
,” J. Comput.-Aided Mater. Des.
0928-1045, 9
, pp. 203
–239
.39.
Palla
, P.
, Ippolito
, M.
, Giordano
, S.
, Mattoni
, A.
, and Colombo
, L.
, 2008, “Atomistic Approach to Nanomechanics: Concepts, Methods, and (Some) Applications
,” The Nanomechanics in Italy
, N.
Pugno
, ed., Transworld Research Network
, Kerala, India
, pp. 75
–107
.40.
Goddard
, J. D.
, 2008, “From Granular Matter to Generalized Continuum
,” Mathematical Models of Granular Matter
(Lecture Notes in Mathematics
, Vol. 1937
), G.
Capriz
, P.
Giovine
, and P. M.
Mariano
, eds., Springer-Verlag
, Berlin
, pp. 1
–21
.41.
Capriz
, G.
, 1989, Continua With Microstructure
, Springer-Verlag
, New York
.42.
Eringen
, A. C.
, 1999, Microcontinuum Field Theories
, Springer-Verlag
, New York
.43.
Svendsen
, B.
, 2001, “On the Continuum Modeling of Materials With Kinematic Structure
,” Acta Mech.
0001-5970, 152
, pp. 49
–79
.44.
Friesecke
, G.
, and Theil
, F.
, 2002, “Validity and Failure of the Cauchy-Born Hypothesis in a Two-Dimensional Mass-Spring Lattice
,” J. Nonlinear Sci.
0938-8794, 12
, pp. 445
–478
.45.
Ericksen
, J. L.
, 2008, “On the Cauchy-Born Rule
,” Math. Mech. Solids
1081-2865, 13
, pp. 199
–220
.46.
Geers
, M. G. D.
, Kouznetsova
, V. G.
, and Brekelmans
, W. A. M.
, 2005, “Computational Homogenization
,” CISM Lectures (Online Publication).47.
Landau
, L. D.
, and Lifšit
, E. M.
, 1972, Teoria dell’Elasticità
, Editori Riuniti
, Rome
, p. 174
.48.
Mattoni
, A.
, Colombo
, L.
, and Cleri
, F.
, 2004, “Atomistic Study of the Interaction Between a Microcrack and a Hard Inclusion in β-SiC
,” Phys. Rev. B
0163-1829, 70
, p. 094108
.49.
Maugin
, G.
, 1993, Material Inhomogeneities in Elasticity
, Chapman and Hall
, London
.50.
Gurtin
, M. E.
, 2000, Configurational Forces as Basis Concept of Continuum Physics
, Springer-Verlag
, Berlin
.51.
Germain
, P.
, 1973, “The Method of Virtual Power in Continuum Mechanics. Part II: Microstructure
,” SIAM J. Appl. Math.
0036-1399, 25
, pp. 556
–575
.52.
Di Carlo
, A.
, 1996, “A Non-Standard Format for Continuum Mechanics
,” Contemporary Research in the Mechanics and Mathematics of Materials
, R. C.
Batra
and M. F.
Beatty
, eds., CIMNE
, Barcelona
, pp. 92
–104
.53.
Gurtin
, M. E.
, and Podio-Guidugli
, P.
, 1992, “On the Formulation of Mechanical Balance Laws for Structured Continua
,” Z. Angew. Math. Phys.
0044-2275, 43
(1
), pp. 181
–190
.54.
Trovalusci
, P.
, and Varano
, V.
, 2010, “Microcracked Materials as Non-Simple Continua
, Mater. Sci. Forum
0255-5476, 638-642
, pp. 2749
–2754
.55.
Capriz
, G.
, and Podio-Guidugli
, P.
, 2002, “Whence the Boundary Conditions in Modern Continuum Physics?
,” Atti dei Convegni Lincei
, Rome, Vol. 210, pp. 19
–42
.56.
Hudson
, J. A.
, 1981, “Wave Speeds and Attenuation of Elastic Waves in Materials Containing Cracks
,” Geophys. J. R. Astron. Soc.
0016-8009, 64
, pp. 133
–150
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.