A multifield continuum is adopted to grossly describe the dynamical behavior of composite microcracked solids. The constitutive relations for the internal and external (inertial) actions are obtained using a multiscale modeling based on the hypotheses of the classical molecular theory of elasticity and the ensuing overall elastodynamic properties allow us to take properly into account the microscopic features of these materials. Referring to a one-dimensional microcracked bar, the ability of such a continuum to reveal the presence of internal heterogeneities is investigated by analyzing the relevant dispersive wave propagation properties. Scattering of traveling waves is shown to be associated with the microcrack density in the bar.

1.
Rapaport
,
D. C.
, 1995,
The Art of Molecular Dynamics Simulation
,
Cambridge University Press
,
Cambridge
.
2.
Rhee
,
M.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
,
Huang
,
H.
, and
de la Rubia
,
T.
, 1998, “
Models for Long/Short Range Interactions and Cross Slip in 3D Dislocation Simulation of BCC Single Crystals
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
6
, pp.
467
492
.
3.
Pugno
,
N.
,
Carpinteri
,
A.
,
Ippolito
,
M.
,
Mattoni
,
A.
, and
Colombo
,
L.
, 2008, “
Atomistic Fracture: QFM vs. MD
,”
Eng. Fract. Mech.
0013-7944,
75
, pp.
1794
1803
.
4.
Sanchez-Palencia
,
E.
and
Zaoui
,
A.
, eds., 1985,
Homogenization Techniques for Composite Media
(
Lecture Notes in Physics
, Vol.
272
),
Springer-Verlag
,
Berlin
.
5.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1993,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
,
Amsterdam
.
6.
Ostoja-Starzewski
,
M.
,
Du
,
X.
,
Khisaeva
,
Z. F.
, and
Li
,
W.
, 2007, “
Comparison of the Size of the Representative Volume Element in Elastic, Plastic, Thermoelastic, and Permeable Random Microstructures
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
5
(
2
), pp.
73
82
.
7.
Ostoja-Starzewski
,
M.
, 2008,
Microstructural Randomness and Scaling in Mechanics of Materials
,
Taylor & Francis
,
Boca Raton, FL
.
8.
Geymonat
,
G.
,
Muller
,
G.
, and
Triantafyllidis
,
N.
, 1993, “
Homogenization of Non-Linearly Elastic Materials, Microscopic Bifurcation and Macroscopic Loss of Rank-One Convexity
,”
Arch. Ration. Mech. Anal.
0003-9527,
122
, pp.
231
290
.
9.
Ponte Castañeda
,
P.
, and
Suquet
,
P.
, 1997, “
Nonlinear Composites
,”
Adv. Appl. Mech.
0065-2156,
34
, pp.
171
302
.
10.
Trovalusci
,
P.
, and
Masiani
,
R.
, 1999, “
Material Symmetries of Micropolar Continua Equivalent to Lattices
,”
Int. J. Solids Struct.
0020-7683,
36
(
14
), pp.
2091
2108
.
11.
Trovalusci
,
P.
, and
Masiani
,
R.
, 2003, “
Non-Linear Micropolar and Classical Continua for Anisotropic Discontinuous Materials
,”
Int. J. Solids Struct.
0020-7683,
40
(
5
), pp.
1281
1297
.
12.
Trovalusci
,
P.
, and
Masiani
,
R.
, 2005, “
A Multi-Field Model for Blocky Materials Based on Multiscale Description
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
5778
5794
.
13.
Muki
,
R.
, and
Sternberg
,
E.
, 1965, “
The Influence of Couple-Stresses on Singular Stress Concentrations in Elastic Solids
,”
Z. Angew. Math. Phys.
0044-2275,
16
, pp.
611
648
.
14.
Banks
,
C. B.
, and
Sokolowski
,
M.
, 1968, “
On Certain Two-Dimensional Applications of the Couple Stress Theory
,”
Int. J. Solids Struct.
0020-7683,
4
, pp.
15
29
.
15.
Read
,
H. E.
, and
Hegemier
,
G. A.
, 1984, “
Strain Softening of Rock, Soil and Concrete—A Review Article
,”
Mech. Mater.
0167-6636,
3
, pp.
271
294
.
16.
Sluys
,
L. J.
,
de Borst
,
R.
, and
Mühlhaus
,
H. -B.
, 1993, “
Wave Propagation, Localization and Dispersion in a Gradient-Dependent Medium
,”
Int. J. Solids Struct.
0020-7683,
30
(
9
), pp.
1153
1171
.
17.
Smyshlyaev
,
V. P.
, and
Cherednichenko
,
K. D.
, 2000, “
On Rigorous Derivation of Strain Gradient Effects in the Overall Behaviour of Periodic Heterogeneous Media
,”
J. Mech. Phys. Solids
0022-5096,
48
(
6–7
), pp.
1325
1357
.
18.
Kouznetsova
,
V. G.
,
Geers
,
M. G. D.
, and
Brekelmans
,
W. A. M.
, 2004, “
Multi-Scale Second Order Computational Homogenization of Multi-Phase Materials: A Nested Finite Element Solution Strategy
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
5525
5550
.
19.
Gurtin
,
M. E.
, 1965, “
Thermodynamics and the Possibility of Spatial Interaction in Elastic Materials
,”
Arch. Ration. Mech. Anal.
0003-9527,
19
, pp.
339
352
.
20.
Ostoja-Starzewski
,
M.
,
Boccara
,
S. D.
, and
Jasiuk
,
I.
, 1999, “
Couple-Stress Moduli and Characteristic Length of a Two-Phase Composite
,”
Mech. Res. Commun.
0093-6413,
26
(
4
), pp.
387
396
.
21.
Forest
,
S.
,
Pradel
,
F.
, and
Sab
,
K.
, 2001, “
Asymptotic Analysis of Heterogeneous Cosserat Media
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
4585
4608
.
22.
Onck
,
P. R.
, 2002, “
Cosserat Modelling of Cellular Solids
,”
C. R. Mec.
1631-0721,
330
, pp.
717
722
.
23.
Peerlings
,
R. H. J.
, and
Fleck
,
N. A.
, 2004, “
Computational Evaluation of Strain Gradient Elasticity Constants
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
2
(
4
), pp.
599
619
.
24.
Trovalusci
,
P.
, and
Augusti
,
G.
, 1998, “
A Continuum Model With Microstructure for Materials With Flaws and Inclusions
,”
J. Phys. IV
1155-4339,
8
, pp.
Pr8
-383– Pr8-
390
.
25.
Mariano
,
P. M.
, and
Trovalusci
,
P.
, 1999, “
Constitutive Relations for Elastic Microcracked Bodies: From a Lattice Model to a Multifield Continuum Description
,”
Int. J. Damage Mech.
1056-7895,
8
, pp.
153
173
.
26.
Sansalone
,
V.
,
Trovalusci
,
P.
, and
Cleri
,
F.
, 2006, “
Multiscale Modelling of Materials by a Multifield Approach: Microscopic Stress and Strain Distribution in Fiber-Matrix Composites
,”
Acta Mater.
1359-6454,
54
(
13
), pp.
3485
3492
.
27.
Sansalone
,
V.
, and
Trovalusci
,
P.
, 2007, “
A Numerical Investigation of Structure–Property Relations in Fibre Composite Materials
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
5
(
2
), pp.
141
152
.
28.
Trovalusci
,
P.
, and
Rega
,
G.
, 2007, “
Elastic Waves in Heterogeneous Materials as in Multiscale-Multifield Continua
,”
Proc. Est. Acad. Sci., Phys., Math.
1406-0086,
56
(
2
), pp.
100
107
.
29.
Voigt
,
W.
, 1887, “
Theoretische Studien über die Elasticitätsverhältnisse der Kristalle
,” Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen, XXXIV.
30.
Poincaré
,
H.
, 1892,
Leçons sur la Théorie de l’Elasticité
, Carré, Paris.
31.
Voigt
,
W.
, 1910,
Lehrbuch der Kristallphysik
,
B.G. Teubner
,
Leipzig
.
32.
Trovalusci
,
P.
,
Capecchi
,
D.
, and
Ruta
,
G.
, 2009, “
Genesis of the Multiscale Approach for Materials With Microstructure
,”
Arch. Appl. Mech.
0939-1533,
79
, pp.
981
997
.
33.
Askar
,
A.
, 1985,
Lattice Dynamical Foundation of Continuum Theories
,
World Scientific
,
Singapore
.
34.
Ericksen
,
J. L.
, 1977, “
Special Topics in Elastostatics
,”
Advances in Applied Mechanics
,
C. -S.
Yih
, ed.,
Academic
,
New York
, Vol.
17
, pp.
189
241
.
35.
Kunin
,
A.
, 1982,
Elastic Media With Microstructure-I (One-Dimensional Models)
,
Springer-Verlag
,
Berlin
.
36.
Fago
,
M.
,
Hayes
,
R. L.
,
Carter
,
E. A.
, and
Ortiz
,
M.
, 2004, “
Density-Functional-Theory-Based Local Quasicontinuum Method: Prediction of Dislocation Nucleation
,”
Phys. Rev. B
0163-1829,
70
, p.
100102
.
37.
Bardenhagen
,
S. G.
, and
Triantafyllidis
,
N.
, 1994, “
Derivation of Higher Order Gradient Continuum Theories in 2,3-D Non-Linear Elasticity From Periodic Lattice Models
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
111
139
.
38.
Miller
,
R. E.
, and
Tadmor
,
E. B.
, 2002, “
The Quasicontinuum Method: Overview, Applications and Current Directions
,”
J. Comput.-Aided Mater. Des.
0928-1045,
9
, pp.
203
239
.
39.
Palla
,
P.
,
Ippolito
,
M.
,
Giordano
,
S.
,
Mattoni
,
A.
, and
Colombo
,
L.
, 2008, “
Atomistic Approach to Nanomechanics: Concepts, Methods, and (Some) Applications
,”
The Nanomechanics in Italy
,
N.
Pugno
, ed.,
Transworld Research Network
,
Kerala, India
, pp.
75
107
.
40.
Goddard
,
J. D.
, 2008, “
From Granular Matter to Generalized Continuum
,”
Mathematical Models of Granular Matter
(
Lecture Notes in Mathematics
, Vol.
1937
),
G.
Capriz
,
P.
Giovine
, and
P. M.
Mariano
, eds.,
Springer-Verlag
,
Berlin
, pp.
1
21
.
41.
Capriz
,
G.
, 1989,
Continua With Microstructure
,
Springer-Verlag
,
New York
.
42.
Eringen
,
A. C.
, 1999,
Microcontinuum Field Theories
,
Springer-Verlag
,
New York
.
43.
Svendsen
,
B.
, 2001, “
On the Continuum Modeling of Materials With Kinematic Structure
,”
Acta Mech.
0001-5970,
152
, pp.
49
79
.
44.
Friesecke
,
G.
, and
Theil
,
F.
, 2002, “
Validity and Failure of the Cauchy-Born Hypothesis in a Two-Dimensional Mass-Spring Lattice
,”
J. Nonlinear Sci.
0938-8794,
12
, pp.
445
478
.
45.
Ericksen
,
J. L.
, 2008, “
On the Cauchy-Born Rule
,”
Math. Mech. Solids
1081-2865,
13
, pp.
199
220
.
46.
Geers
,
M. G. D.
,
Kouznetsova
,
V. G.
, and
Brekelmans
,
W. A. M.
, 2005, “
Computational Homogenization
,” CISM Lectures (Online Publication).
47.
Landau
,
L. D.
, and
Lifšit
,
E. M.
, 1972,
Teoria dell’Elasticità
,
Editori Riuniti
,
Rome
, p.
174
.
48.
Mattoni
,
A.
,
Colombo
,
L.
, and
Cleri
,
F.
, 2004, “
Atomistic Study of the Interaction Between a Microcrack and a Hard Inclusion in β-SiC
,”
Phys. Rev. B
0163-1829,
70
, p.
094108
.
49.
Maugin
,
G.
, 1993,
Material Inhomogeneities in Elasticity
,
Chapman and Hall
,
London
.
50.
Gurtin
,
M. E.
, 2000,
Configurational Forces as Basis Concept of Continuum Physics
,
Springer-Verlag
,
Berlin
.
51.
Germain
,
P.
, 1973, “
The Method of Virtual Power in Continuum Mechanics. Part II: Microstructure
,”
SIAM J. Appl. Math.
0036-1399,
25
, pp.
556
575
.
52.
Di Carlo
,
A.
, 1996, “
A Non-Standard Format for Continuum Mechanics
,”
Contemporary Research in the Mechanics and Mathematics of Materials
,
R. C.
Batra
and
M. F.
Beatty
, eds.,
CIMNE
,
Barcelona
, pp.
92
104
.
53.
Gurtin
,
M. E.
, and
Podio-Guidugli
,
P.
, 1992, “
On the Formulation of Mechanical Balance Laws for Structured Continua
,”
Z. Angew. Math. Phys.
0044-2275,
43
(
1
), pp.
181
190
.
54.
Trovalusci
,
P.
, and
Varano
,
V.
, 2010, “
Microcracked Materials as Non-Simple Continua
,
Mater. Sci. Forum
0255-5476,
638-642
, pp.
2749
2754
.
55.
Capriz
,
G.
, and
Podio-Guidugli
,
P.
, 2002, “
Whence the Boundary Conditions in Modern Continuum Physics?
,”
Atti dei Convegni Lincei
, Rome, Vol. 210, pp.
19
42
.
56.
Hudson
,
J. A.
, 1981, “
Wave Speeds and Attenuation of Elastic Waves in Materials Containing Cracks
,”
Geophys. J. R. Astron. Soc.
0016-8009,
64
, pp.
133
150
.
You do not currently have access to this content.