In this study, a comprehensive analytical model is established based on Euler–Bernoulli beam theory with von Kármán geometric nonlinearity to investigate the effect of residual surface tension, surface elasticity, and temperature on the static pull-in voltages of multilayer graphene nanoribbon (MLGNR) doubly-clamped beams under electrostatic and Casimir forces and axial residual stress. An explicit closed-form analytical solution to the governing fourth-order nonlinear differential equation of variable coefficients is presented for the static pull-in behavior of electrostatic nanoactuators using a Fredholm integral equation of the first kind. The high accuracy of the present analytical model is validated for some special cases through comparison with other existing numerical, analytical, and experimental models. The effects of the number of graphene nanoribbons (GNRs), temperature, surface tension, and surface elasticity on the pull-in voltage and displacement of MLGNR electrostatic nanoactuaotrs are investigated. Results indicate that the thermal effect on the pull-in voltage is significant especially when a smaller number of GNRs are used. It is found that the surface effects become more dominant as the number of GNRs decreases. It is also demonstrated that the residual surface tension exerts a greater influence on the pull-in voltage in comparison with the surface elasticity.

References

1.
Lee
,
C.
,
Wei
,
X. D.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.10.1126/science.1157996
2.
Castro Neto
,
A. H.
,
Guinea
,
F.
,
Peres
,
N. M. R.
,
Novoselov
,
K. S.
, and
Geim
,
A. K.
,
2009
, “
The Electronic Properties of Graphene
,”
Rev. Mod. Phys.
,
81
(
1
), pp.
109
162
.10.1103/RevModPhys.81.109
3.
Nair
,
R. R.
,
Blake
,
P.
,
Grigorenko
,
A. N.
,
Novoselov
,
K. S.
,
Booth
,
T. J.
,
Stauber
,
T.
,
Peres
,
N. M. R.
, and
Geim
,
A. K.
,
2008
, “
Fine Structure Constant Defines Visual Transparency of Graphene
,”
Science
,
320
(
5881
), pp.
1308
1315
.10.1126/science.1156965
4.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W. Z.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.10.1021/nl0731872
5.
Lin
,
Y. M.
,
Dimitrakopoulos
,
C.
,
Jenkins
,
K. A.
,
Farmer
,
D. B.
,
Chiu
,
H. Y.
,
Grill
,
A.
, and
Avouris
,
P.
,
2010
, “
100-GHz Transistors From Wafer-Scale Epitaxial Graphene
,”
Science
,
327
(
5966
), p.
662
.10.1126/science.1184289
6.
Liu
,
M.
,
Yin
,
X. B.
,
Ulin-Avila
,
E.
,
Geng
,
B. S.
,
Zentgraf
,
T.
,
Ju
,
L.
,
Wang
,
F.
, and
Zhang
,
X.
,
2011
, “
A Graphene-Based Broadband Optical Modulator
,”
Nature
,
474
(
7349
), pp.
64
67
.10.1038/nature10067
7.
Liu
,
C. G.
,
Yu
,
Z. N.
,
Neff
,
D.
,
Zhamu
,
A.
, and
Jang
,
B. Z.
,
2010
, “
Graphene-Based Supercapacitor With an Ultrahigh Energy Density
,”
Nano Lett.
,
10
(
12
), pp.
4863
4868
.10.1021/nl102661q
8.
Stoller
,
M. D.
,
Park
,
S. J.
,
Zhu
,
Y. W.
,
An
,
J. H.
, and
Ruoff
,
R. S.
,
2008
, “
Graphene-Based Ultracapacitors
,”
Nano Lett.
,
8
(
10
), pp.
3498
3502
.10.1021/nl802558y
9.
Frank
,
I. W.
,
Tanenbaum
,
D. M.
,
Van der Zande
,
A. M.
, and
McEuen
,
P. L.
,
2007
, “
Mechanical Properties of Suspended Graphene Sheets
,”
J. Vac. Sci. Technol. B
,
25
(
6
), pp.
2558
2561
.10.1116/1.2789446
10.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Dommett
,
G. H. B.
,
Kohlhaas
,
K. M.
,
Zimney
,
E. J.
,
Stach
,
E. A.
,
Piner
,
R. D.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2006
, “
Graphene-Based Composite Materials
,”
Nature
,
442
(
7100
), pp.
282
286
.10.1038/nature04969
11.
Terrones
,
M.
,
Botello-Mendez
,
A. R.
,
Campos-Delgado
,
J.
,
Lopez-Urias
,
F.
,
Vega-Cantu
,
Y. I.
,
Rodriguez-Macias
,
F. J.
,
Elias
,
A. L.
,
Munoz-Sandoval
,
E.
,
Cano-Marquez
,
A. G.
,
Charlier
,
J. C.
, and
Terrones
,
H.
,
2010
, “
Graphene and Graphite Nanoribbons: Morphology, Properties, Synthesis, Defects and Applications
,”
Nano Today
,
5
(
4
), pp.
351
372
.10.1016/j.nantod.2010.06.010
12.
Mccarley
,
R. L.
,
Hendricks
,
S. A.
, and
Bard
,
A. J.
,
1992
, “
Controlled Nanofabrication of Highly Oriented Pyrolytic-Graphite With the Scanning Tunneling Microscope
,”
J. Phys. Chem.
,
96
(
25
), pp.
10089
10092
.10.1021/j100204a002
13.
Moreno-Moreno
,
M.
,
Castellanos-Gomez
,
A.
,
Rubio-Bollinger
,
G.
,
Gomez-Herrero
,
J.
, and
Agrait
,
N.
,
2009
, “
Ultralong Natural Graphene Nanoribbons and Their Electrical Conductivity
,”
Small
,
5
(
8
), pp.
924
927
.10.1002/smll.200801442
14.
Wei
,
D. C.
,
Liu
,
Y. Q.
,
Zhang
,
H. L.
,
Huang
,
L. P.
,
Wu
,
B.
,
Chen
,
J. Y.
, and
Yu
,
G.
,
2009
, “
Scalable Synthesis of Few-Layer Graphene Ribbons With Controlled Morphologies by a Template Method and Their Applications in Nanoelectromechanical Switches
,”
J. Am. Chem. Soc.
,
131
(
31
), pp.
11147
11154
.10.1021/ja903092k
15.
Li
,
X. L.
,
Wang
,
X. R.
,
Zhang
,
L.
,
Lee
,
S. W.
, and
Dai
,
H. J.
,
2008
, “
Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors
,”
Science
,
319
(
5867
), pp.
1229
1232
.10.1126/science.1150878
16.
Yang
,
X. Y.
,
Dou
,
X.
,
Rouhanipour
,
A.
,
Zhi
,
L. J.
,
Rader
,
H. J.
, and
Mullen
,
K.
,
2008
, “
Two-Dimensional Graphene Nanoribbons
,”
J. Am. Chem. Soc.
,
130
(
13
), pp.
4216
4217
.10.1021/ja710234t
17.
Jiao
,
L. Y.
,
Zhang
,
L.
,
Wang
,
X. R.
,
Diankov
,
G.
, and
Dai
,
H. J.
,
2009
, “
Narrow Graphene Nanoribbons From Carbon Nanotubes
,”
Nature
,
458
(
7240
), pp.
877
880
.10.1038/nature07919
18.
Kosynkin
,
D. V.
,
Higginbotham
,
A. L.
,
Sinitskii
,
A.
,
Lomeda
,
J. R.
,
Dimiev
,
A.
,
Price
,
B. K.
, and
Tour
,
J. M.
,
2009
, “
Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons
,”
Nature
,
458
(
7240
), pp.
872
876
.10.1038/nature07872
19.
Terrones
,
M.
,
2009
, “
Materials Science Nanotubes Unzipped
,”
Nature
,
458
(
7240
), pp.
845
846
.10.1038/458845a
20.
Pelesko
,
J. A.
, and
Bernstein
,
D. H.
,
2002
,
Modeling MEMS and NEMS
,
Chapman and Hall
,
London
.
21.
Nathanson
,
H. C.
,
Newell
,
W. E.
,
Wickstrom
,
R. A.
, and
Davis
,
J. R.
,
1967
, “
The Resonant Gate Transistor
,”
IEEE Trans. Electron. Dev.
,
14
, pp.
117
133
.10.1109/T-ED.1967.15912
22.
Taylor
,
G. I.
,
1968
, “
The Coalescence of Closely Spaced Drops When They Are at Different Electric Potentials
,”
Proc. R. Soc. London Sect. A
,
306
, pp.
423
434
.10.1098/rspa.1968.0159
23.
Hung
,
E. S.
, and
Senturia
,
S. D.
,
1999
, “
Extending the Travel Range of Analog-Tuned Electrostatic Actuators
,”
J. Microelectromech. Syst.
,
8
(
4
), pp.
497
505
.10.1109/84.809065
24.
Legtenberg
,
R.
, and
Tilmans
,
H. A. C.
,
1994
, “
Electrostatically Driven Vacuum-Encapsulated Polysilicon Resonators. 1. Design and Fabrication
,”
Sens. Actuators
, A,
45
(
1
), pp.
57
66
.10.1016/0924-4247(94)00812-4
25.
Nguyen
,
C. T. C.
,
Katehi
,
L. P. B.
, and
Rebeiz
,
G. M.
,
1998
, “
Micromachined Devices for Wireless Communications
,”
Proc. IEEE
,
86
(
8
), pp.
1756
1768
.10.1109/5.704281
26.
Bunch
,
J. S.
,
van der Zande
,
A. M.
,
Verbridge
,
S. S.
,
Frank
,
I. W.
,
Tanenbaum
,
D. M.
,
Parpia
,
J. M.
,
Craighead
,
H. G.
, and
McEuen
,
P. L.
,
2007
, “
Electromechanical Resonators From Graphene Sheets
,”
Science
,
315
(
5811
), pp.
490
493
.10.1126/science.1136836
27.
Zhu
,
S. E.
,
Shabani
,
R.
,
Rho
,
J.
,
Kim
,
Y.
,
Hong
,
B. H.
,
Ahn
,
J. H.
, and
Cho
,
H. J.
,
2011
, “
Graphene-Based Bimorph Microactuators
,”
Nano Lett.
,
11
(
3
), pp.
977
981
.10.1021/nl103618e
28.
Song
,
F.
,
Huang
,
G. L.
,
Park
,
H. S.
, and
Liu
,
X. N.
,
2011
, “
A Continuum Model for the Mechanical Behavior of Nanowires Including Surface and Surface-Induced Initial Stresses
,”
Int. J. Solids Struct.
,
48
(
14–15
), pp.
2154
2163
.10.1016/j.ijsolstr.2011.03.021
29.
Saeedi Vahdat
,
A.
, and
Rezazadeh
,
G.
,
2011
, “
Effects of Axial and Residual Stresses on Thermoelastic Damping in Capacitive Micro-Beam Resonators
,”
J. Franklin Inst.
,
348
, pp.
622
639
.10.1016/j.jfranklin.2011.01.007
30.
Gheshlaghi
,
B.
, and
Hasheminejad
,
S. M.
,
2011
, “
Surface Effects on Nonlinear Free Vibration of Nanobeams
,”
Composites, Part B
,
42
(
4
), pp.
934
937
.10.1016/j.compositesb.2010.12.026
31.
Kovalenko
,
A. D.
,
1969
,
Thermoelasticity
,
Wolters-Noordhoff Publishing
,
Gröningen, The Netherlands
.
32.
Conley
,
H.
,
Lavrik
,
N. V.
,
Prasai
,
D.
, and
Bolotin
,
K. I.
,
2011
, “
Graphene Bimetallic-Like Cantilevers: Probing Graphene/Substrate Interactions
,”
Nano Lett.
,
11
(
11
), pp.
4748
4752
.10.1021/nl202562u
33.
Singh
,
V.
,
Sengupta
,
S.
,
Solanki
,
H. S.
,
Dhall
,
R.
,
Allain
,
A.
,
Dhara
,
S.
,
Pant
,
P.
, and
Deshmukh
,
M. M.
,
2010
, “
Probing Thermal Expansion of Graphene and Modal Dispersion at Low-Temperature Using Graphene Nanoelectromechanical Systems Resonators
,”
Nanotechnology
,
21
(
16
),
165204
.10.1088/0957-4484/21/16/165204
34.
Bao
,
W. Z.
,
Miao
,
F.
,
Chen
,
Z.
,
Zhang
,
H.
,
Jang
,
W. Y.
,
Dames
,
C.
, and
Lau
,
C. N.
,
2009
, “
Controlled Ripple Texturing of Suspended Graphene and Ultrathin Graphite Membranes
,”
Nat. Nanotechnol.
,
4
(
9
), pp.
562
566
.10.1038/nnano.2009.191
35.
Jiang
,
J. W.
,
Wang
,
J. S.
, and
Li
,
B. W.
,
2009
, “
Thermal Expansion in Single-Walled Carbon Nanotubes and Graphene: Nonequilibrium Green's Function Approach
,”
Phys. Rev. B
,
80
(
20
),
205429
.10.1103/PhysRevB.80.205429
36.
Bailey
,
A. C.
, and
Yates
,
B.
,
1970
, “
Anisotropic Thermal Expansion of Pyrolytic Graphite at Low Temperatures
,”
J. Appl. Phys.
,
41
(
13
), pp.
5088
5091
.10.1063/1.1658609
37.
Pierson
,
H. O.
,
1993
,
Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications
,
Noyes Publications
,
Park Ridge, NJ
.
38.
Chen
,
C. Y.
,
Rosenblatt
,
S.
,
Bolotin
,
K. I.
,
Kalb
,
W.
,
Kim
,
P.
,
Kymissis
,
I.
,
Stormer
,
H. L.
,
Heinz
,
T. F.
, and
Hone
,
J.
,
2009
, “
Performance of Monolayer Graphene Nanomechanical Resonators With Electrical Readout
,”
Nat. Nanotechnol.
,
4
(
12
), pp.
861
867
.10.1038/nnano.2009.267
39.
Mounet
,
N.
, and
Marzari
,
N.
,
2005
, “
First-Principles Determination of the Structural, Vibrational and Thermodynamic Properties of Diamond, Graphite, and Derivatives
,”
Phys. Rev. B
,
71
(
20
),
205214
.10.1103/PhysRevB.71.205214
40.
Huang
,
J. M.
,
Liew
,
K. M.
,
Wong
,
C. H.
,
Rajendran
,
S.
,
Tan
,
M. J.
, and
Liu
,
A. Q.
,
2001
, “
Mechanical Design and Optimization of Capacitive Micromachined Switch
,”
Sens. Actuators
, A,
93
(
3
), pp.
273
285
.10.1016/S0924-4247(01)00662-8
41.
Bordag
,
M.
,
Fialkovsky
,
I. V.
,
Gitman
,
D. M.
, and
Vassilevich
,
D. V.
,
2009
, “
Casimir Interaction Between a Perfect Conductor and Graphene Described by the Dirac Model
,”
Phys. Rev. B
,
80
(
24
),
245406
.10.1103/PhysRevB.80.245406
42.
Fialkovsky
,
I. V.
,
Marachevsky
,
V. N.
, and
Vassilevich
,
D. V.
,
2011
, “
Finite-Temperature Casimir Effect for Graphene
,”
Phys. Rev. B
,
84
(
3
), p.
035446
.10.1103/PhysRevB.84.035446
43.
Abadyan
,
M.
,
Novinzadeh
,
A.
, and
Kazemi
,
A.
,
2010
, “
Approximating the Effect of the Casimir Force on the Instability of Electrostatic Nano-Cantilevers
,”
Phys. Scr.
,
81
(
1
), p.
015801
.10.1088/0031-8949/81/01/015801
44.
Ramezani
,
A.
,
Alasty
,
A.
, and
Akbari
,
J.
,
2007
, “
Closed-Form Solutions of the Pull-In Instability in Nano-Cantilevers Under Electrostatic and Intermolecular Surface Forces
,”
Int. J. Solids Struct.
,
44
(
14–15
), pp.
4925
4941
.10.1016/j.ijsolstr.2006.12.015
45.
Rokni
,
H.
,
Seethaler
,
R. J.
,
Milani
,
A. S.
,
Hosseini-Hashemi
,
S.
, and
Li
,
X. F.
,
2013
, “
Exact Closed-Form Solutions for Size-Dependent Static Pull-In Behavior in Electrostatic Microactuators Via Fredholm Integral Equation
,”
Sens. Actuators
, A,
190
(
1
), pp.
32
43
.10.1016/j.sna.2012.10.035
46.
Rokni
,
H.
, and
Lu
,
W.
,
2012
, “
Effect of Graphene Layers on Static Pull-In Behavior of Bilayer Graphene/Substrate Electrostatic Microactuators
,”
J. Microelectromech. Syst.
,
99
, pp.
1
7
.10.1109/JMEMS.2012.2230315
47.
Osterberg
,
P. M.
, and
Senturia
,
S. D.
,
1997
, “
M-TEST: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
107
118
.10.1109/84.585788
48.
O'Mahony
,
C.
,
Hill
,
M.
,
Duane
,
R.
, and
Mathewson
,
A.
,
2003
, “
Analysis of Electromechanical Boundary Effects on the Pull-In of Micromachined Fixed-Fixed Beams
,”
J. Micromech. Microeng.
,
13
(
4
), pp.
S75
S80
.10.1088/0960-1317/13/4/312
49.
Chowdhury
,
S.
,
Ahmadi
,
M.
, and
Miller
,
W. C.
,
2006
, “
Pull-In Voltage Study of Electrostatically Actuated Fixed-Fixed Beams Using a VLSI On-Chip Interconnect Capacitance Model
,”
J. Microelectromech. Syst.
,
15
(
3
), pp.
639
651
.10.1109/JMEMS.2005.863784
50.
Sadeghian
,
H.
,
Rezazadeh
,
G.
, and
Osterberg
,
P. M.
,
2007
, “
Application of the Generalized Differential Quadrature Method to the Study of Pull-In Phenomena of MEMS Switches
,”
J. Microelectromech. Syst.
,
16
(
6
), pp.
1334
1340
.10.1109/JMEMS.2007.909237
51.
Fu
,
Y. M.
, and
Zhang
,
J.
,
2011
, “
Size-Dependent Pull-In Phenomena in Electrically Actuated Nanobeams Incorporating Surface Energies
,”
Appl. Math. Model.
,
35
(
2
), pp.
941
951
.10.1016/j.apm.2010.07.051
You do not currently have access to this content.