In this work it is shown that the exact plastic potential for porous solids with von Mises perfectly plastic matrix containing spherical cavities should involve a very specific coupling between the mean stress and the third invariant of the stress deviator. Furthermore, a new approximate plastic potential that preserves this key feature of the exact one is developed. Unlike all existing analytical criteria for porous solids with von Mises matrix, this new criterion displays a lack of symmetry with respect to both the hydrostatic and deviatoric axes. A full-field approach is also used to generate numerical gauge surfaces. These calculations confirm the aforementioned new features of the dilatational response.
Issue Section:
Technical Briefs
References
1.
Gurson
, A. L.
, 1977
, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth—Part I: Yield Criteria and Flow Rules for Porous Ductile Media
,” ASME J. Eng. Mater.
, 99
, pp. 2
–15
.10.1115/1.34434012.
Tvergaard
, V.
, 1981
, “Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,” Int. J. Fract.
, 17
, pp. 389
–407
.10.1007/BF000361913.
Monchiet
, V.
, Charkaluk
, E.
, and Kondo
, D.
, 2011
, “A Micromechanics-Based Modification of the Gurson Criterion by Using Eshelby-Like Velocity Fields
,” Eur. J. Mech. A
, 30
, pp. 940
–949
.10.1016/j.euromechsol.2011.05.0084.
Duva
, J. M.
, and Hutchinson
, J. W.
, 1984
, “Constitutive Potentials for Dilutely Voided Nonlinear Materials
,” Mech. Mater.
, 3
, pp. 41
–54
.10.1016/0167-6636(84)90013-95.
Thoré
, P.
, Pastor
, F.
, and Pastor
, J.
, 2011
, “Hollow Sphere Models, Conic Programming and Third Stress Invariant
,” Eur. J. Mech. A
, 30
, pp. 63
–71
.10.1016/j.euromechsol.2010.09.0046.
Leblond
, J.-B.
, Perrin
, G.
, and Suquet
, P.
, 1994
, “Exact Results and Approximate Models for Porous Viscoplastic Solids
,” Int. J. Plasticity
, 10
, pp. 213
–225
.10.1016/0749-6419(94)90001-97.
Richelsen
, A. B.
, and Tvergaard
, V.
, 1994
, “Dilatant Plasticity or Upper Bound Estimates for Porous Ductile Solids
,” Acta Metall. Mater.
, 42
, pp. 2561
–2577
.10.1016/0956-7151(94)90198-88.
Julien
, J.
, Garajeu
, M.
, and Michel
, J.-C.
, 2011
, “A Semi-Analytical Model for the Behavior of Saturated Viscoplastic Materials Containing Two Populations of Voids of Different Sizes
,” Int. J. Solids. Struct.
, 48
, pp. 1485
–1498
.10.1016/j.ijsolstr.2011.01.0319.
Lebensohn
, R. A.
, and Cazacu
, O.
, 2012
, “Effect of Single-Crystal Plastic Deformation Mechanisms on the Dilatational Plastic Response of Porous Polycrystals
,” Int. J. Solids Struct.
, 49
, pp. 3838
–3852
.10.1016/j.ijsolstr.2012.08.01910.
Lebensohn
, R. A.
, Idiart
, M. I.
, Ponte Castaneda
, P.
, and Vincent
, P.-G.
, 2011
, “Dilatational Viscoplasticity of Polycrystalline Solids With Intergranular Cavities
,” Phil. Mag.
, 91
, pp. 3038
–3067
.10.1080/14786435.2011.56181111.
Rice
, J. R.
, and Tracey
, D. M.
, 1969
, “On the Ductile Enlargement of Voids in Triaxial Stress Fields
,” J. Mech. Phys. Solids
, 17
, pp. 201
–217
.10.1016/0022-5096(69)90033-712.
Michel
, J. C.
, Moulinec
, H.
, and Suquet
, P.
, 2000
, “A Computational Method Based on Augmented Lagrangians and Fast Fourier Transforms for Composites With High Contrast
,” Comp. Mod. Eng. Sci.
, 1
(2), pp. 79
–88
.13.
Lebensohn
, R. A.
, 2001
, “N-Site Modeling of a 3-D Viscoplastic Polycrystal Using Fast Fourier Transform
,” Acta Mater.
, 49
, pp. 2723
–2737
.10.1016/S1359-6454(01)00172-0Copyright © 2013 by ASME
You do not currently have access to this content.