Estimating and tracking crack growth dynamics is essential for fatigue failure prediction. A new experimental system—coupling structural and crack growth dynamics—was used to show fatigue damage accumulation is different under chaotic (i.e., deterministic) and stochastic (i.e., random) loading, even when both excitations possess the same spectral and statistical signatures. Furthermore, the conventional rain-flow counting method considerably overestimates damage in case of chaotic forcing. Important nonlinear loading characteristics, which can explain the observed discrepancies, are identified and suggested to be included as loading parameters in new macroscopic fatigue models.

References

1.
Skorupa
,
M.
,
1998
, “
Load Interaction Effects During Fatigue Crack Growth Under Variable Amplitude Loading—A Literature Review. Part I: Empirical Trends
,”
Fatigue Fract. Eng. Mater. Struct.
,
21
, pp.
987
1006
.10.1046/j.1460-2695.1998.00083.x
2.
Skorupa
,
M.
,
1999
, “
Load Interaction Effects During Fatigue Crack Growth Under Variable Amplitude Loading—A Literature Review. Part II. Qualitative Interpretations
.
Fatigue Fract. Eng. Mater. Struct.
,
22
, pp.
905
926
.10.1046/j.1460-2695.1999.00158.x
3.
Miner
,
M.
,
1945
, “
Cumulative Damage in Fatigue
,”
J. Appl. Mech.
,
67
, pp.
A159
A164
.
4.
Palmgren
,
A.
,
1924
, “
Die Lebensdauer von Kugellagern
,”
Zeitschrift des Vereines Deutscher Ingenieure
,
68
(14), pp.
339
341
.
5.
Macha
,
E.
,
Lagoda
,
T.
,
Nieslony
,
A.
, and
Kardas
,
D.
,
2006
, “
Fatigue Life Under Variable-Amplitude Loading According to the Cycle-Counting and Spectral Methods
,”
Mater. Sci.
,
42
(
3
), pp.
416
425
.10.1007/s11003-006-0097-2
6.
Foong
,
C.-H.
,
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
, and
Deans
,
W.F.
,
2003
, “
Chaos Caused by Fatigue Crack Growth
,”
Chaos, Solitons Fractals
,
16
, pp.
651
659
.10.1016/S0960-0779(02)00449-6
7.
Falco
,
M.
,
Liu
,
M.
, and
Chelidze
,
D.
,
2010
, “
A New Fatigue Testing Apparatus Model and Parameter Identification
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Montreal, QB, Canada, August 15–18,
ASME
Paper No. DETC2010-29107, pp.
1007
1012
.10.1115/DETC2010-29107
8.
ASTM E1820-08a
,
2008
, “
Standard Test Methods for Measurement of Fracture Toughness. Annual Book of ASTM Standards
,” ASTM, Philadelphia, PA.
9.
Foong
,
C. H.
,
Wiercigroch
,
M.
, and
Deans
,
W. F.
,
2006
, “
Novel Dynamic Fatigue-Testing Device: Design and Measurements
,”
Meas. Sci. Technol.
,
17
, pp.
2218
2226
.10.1088/0957-0233/17/8/023
10.
Jakšić
,
N.
,
Foong
,
C. H.
,
Wiercigroch
,
M.
, and
Boltežar
,
M.
,
2008
, “
Parameter Identification and Modelling of the Fatigue-Testing Rig
,”
Int. J. Mech. Sci.
,
50
(
7
), pp.
1142
1152
.10.1016/j.ijmecsci.2008.04.007
11.
Schreiber
,
T.
, and
Schmitz
,
A.
,
1996
, “
Improved Surrogate Data for Nonlinearity Tests
,”
Phys. Rev. Lett.
,
77
, pp.
635
638
.10.1103/PhysRevLett.77.635
12.
Kantz
,
H.
, and
Schreiber
,
S.
,
2004
,
Nonlinear Time Series Analysis
,
Cambridge University
,
Cambridge, UK
.
13.
Downing
,
S. D.
, and
Socie
,
D. F.
,
1982
, “
Simple Rainflow Counting Algorithms
,”
Int. J. Fatigue
,
4
(
1
), pp.
31
40
.10.1016/0142-1123(82)90018-4
14.
ASTM E1049
,
1985
, “
Standard Practices for Cycle Counting in Fatigue Analysis
,” ASTM, Philadelphia, PA.
15.
Dingwell
,
J. B.
,
2006
, “Lyapunov Experiments,”
The Wiley Encyclopedia of Biomedical Engineering
, M. Akay, ed., John Wiley & Sons, Inc.,
New York
.10.1002/9780471740360.ebs0702
16.
Wolf
,
A.
,
Swift
,
J.
,
Swinney
,
H.
, and
Vastano
,
J.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
,
16
(
3
), pp.
285
317
.10.1016/0167-2789(85)90011-9
17.
Wolf
,
A.
,
1986
, “Quantifying Chaos With Lyapunov Exponents,” Chaos, A. V. Holden, ed., Princeton University Press, Princeton, NJ.
18.
Grassberger
,
P.
, and
Procaccia
,
I.
,
1983
, “
Characterization of Strange Attractors
,”
Phys. Rev. Lett.
,
50
(
5
), pp.
346
349
.10.1103/PhysRevLett.50.346
19.
Grassberger
,
P.
,
1983
, “
Generalized Dimensions of Strange Attractors
,”
Phys. Lett. A
,
97
(
6
), pp.
227
230
.10.1016/0375-9601(83)90753-3
20.
Grassberger
,
P.
, and
Procaccia
,
I.
,
1983
, “
Measuring the Strangeness of Strange Attractors
,”
Physica D
,
9
, pp.
189
208
.10.1016/0167-2789(83)90298-1
21.
Rosenstein
,
M. T.
,
Collins
,
J. J.
, and
De
Luca
,
C. J.
,
1993
, “
A Practical Method for Calculating Largest Lyapunov Exponents From Small Data Sets
,”
Physica D
,
65
, pp.
117
134
.10.1016/0167-2789(93)90009-P
22.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
33
, pp.
1134
1140
.10.1103/PhysRevA.33.1134
23.
Kennel
,
M. B.
,
Brown
,
R.
, and
Abarbanel
,
H.D.I
,
1992
, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A.
,
45
, pp.
3403
3411
.10.1103/PhysRevA.45.3403
24.
Theiler
,
J.
,
1986
, “
Spurious Dimension From Correlation Algorithms Applied to Limited Time-Series Data
,”
Phys. Rev. A
,
34
, pp.
2427
2432
.10.1103/PhysRevA.34.2427
You do not currently have access to this content.