Estimating and tracking crack growth dynamics is essential for fatigue failure prediction. A new experimental system—coupling structural and crack growth dynamics—was used to show fatigue damage accumulation is different under chaotic (i.e., deterministic) and stochastic (i.e., random) loading, even when both excitations possess the same spectral and statistical signatures. Furthermore, the conventional rain-flow counting method considerably overestimates damage in case of chaotic forcing. Important nonlinear loading characteristics, which can explain the observed discrepancies, are identified and suggested to be included as loading parameters in new macroscopic fatigue models.
Issue Section:
Research Papers
References
1.
Skorupa
, M.
, 1998
, “Load Interaction Effects During Fatigue Crack Growth Under Variable Amplitude Loading—A Literature Review. Part I: Empirical Trends
,” Fatigue Fract. Eng. Mater. Struct.
, 21
, pp. 987
–1006
.10.1046/j.1460-2695.1998.00083.x2.
Skorupa
, M.
, 1999
, “Load Interaction Effects During Fatigue Crack Growth Under Variable Amplitude Loading—A Literature Review. Part II. Qualitative Interpretations
. Fatigue Fract. Eng. Mater. Struct.
, 22
, pp. 905
–926
.10.1046/j.1460-2695.1999.00158.x3.
Miner
, M.
, 1945
, “Cumulative Damage in Fatigue
,” J. Appl. Mech.
, 67
, pp. A159
–A164
.4.
Palmgren
, A.
, 1924
, “Die Lebensdauer von Kugellagern
,” Zeitschrift des Vereines Deutscher Ingenieure
, 68
(14), pp. 339
–341
.5.
Macha
, E.
, Lagoda
, T.
, Nieslony
, A.
, and Kardas
, D.
, 2006
, “Fatigue Life Under Variable-Amplitude Loading According to the Cycle-Counting and Spectral Methods
,” Mater. Sci.
, 42
(3
), pp. 416
–425
.10.1007/s11003-006-0097-26.
Foong
, C.-H.
, Pavlovskaia
, E.
, Wiercigroch
, M.
, and Deans
, W.F.
, 2003
, “Chaos Caused by Fatigue Crack Growth
,” Chaos, Solitons Fractals
, 16
, pp. 651
–659
.10.1016/S0960-0779(02)00449-67.
Falco
, M.
, Liu
, M.
, and Chelidze
, D.
, 2010
, “A New Fatigue Testing Apparatus Model and Parameter Identification
,” ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Montreal, QB, Canada, August 15–18, ASME
Paper No. DETC2010-29107, pp. 1007
–1012
.10.1115/DETC2010-291078.
ASTM E1820-08a
, 2008
, “Standard Test Methods for Measurement of Fracture Toughness. Annual Book of ASTM Standards
,” ASTM, Philadelphia, PA.9.
Foong
, C. H.
, Wiercigroch
, M.
, and Deans
, W. F.
, 2006
, “Novel Dynamic Fatigue-Testing Device: Design and Measurements
,” Meas. Sci. Technol.
, 17
, pp. 2218
–2226
.10.1088/0957-0233/17/8/02310.
Jakšić
, N.
, Foong
, C. H.
, Wiercigroch
, M.
, and Boltežar
, M.
, 2008
, “Parameter Identification and Modelling of the Fatigue-Testing Rig
,” Int. J. Mech. Sci.
, 50
(7
), pp. 1142
–1152
.10.1016/j.ijmecsci.2008.04.00711.
Schreiber
, T.
, and Schmitz
, A.
, 1996
, “Improved Surrogate Data for Nonlinearity Tests
,” Phys. Rev. Lett.
, 77
, pp. 635
–638
.10.1103/PhysRevLett.77.63512.
Kantz
, H.
, and Schreiber
, S.
, 2004
, Nonlinear Time Series Analysis
, Cambridge University
, Cambridge, UK
.13.
Downing
, S. D.
, and Socie
, D. F.
, 1982
, “Simple Rainflow Counting Algorithms
,” Int. J. Fatigue
, 4
(1
), pp. 31
–40
.10.1016/0142-1123(82)90018-414.
ASTM E1049
, 1985
, “Standard Practices for Cycle Counting in Fatigue Analysis
,” ASTM, Philadelphia, PA.15.
Dingwell
, J. B.
, 2006
, “Lyapunov Experiments,” The Wiley Encyclopedia of Biomedical Engineering
, M. Akay, ed., John Wiley & Sons, Inc., New York
.10.1002/9780471740360.ebs070216.
Wolf
, A.
, Swift
, J.
, Swinney
, H.
, and Vastano
, J.
, 1985
, “Determining Lyapunov Exponents From a Time Series
,” Physica D
, 16
(3
), pp. 285
–317
.10.1016/0167-2789(85)90011-917.
Wolf
, A.
, 1986
, “Quantifying Chaos With Lyapunov Exponents,” Chaos, A. V. Holden, ed., Princeton University Press, Princeton, NJ.18.
Grassberger
, P.
, and Procaccia
, I.
, 1983
, “Characterization of Strange Attractors
,” Phys. Rev. Lett.
, 50
(5
), pp. 346
–349
.10.1103/PhysRevLett.50.34619.
Grassberger
, P.
, 1983
, “Generalized Dimensions of Strange Attractors
,” Phys. Lett. A
, 97
(6
), pp. 227
–230
.10.1016/0375-9601(83)90753-320.
Grassberger
, P.
, and Procaccia
, I.
, 1983
, “Measuring the Strangeness of Strange Attractors
,” Physica D
, 9
, pp. 189
–208
.10.1016/0167-2789(83)90298-121.
Rosenstein
, M. T.
, Collins
, J. J.
, and De
Luca
, C. J.
, 1993
, “A Practical Method for Calculating Largest Lyapunov Exponents From Small Data Sets
,” Physica D
, 65
, pp. 117
–134
.10.1016/0167-2789(93)90009-P22.
Fraser
, A. M.
, and Swinney
, H. L.
, 1986
, “Independent Coordinates for Strange Attractors From Mutual Information
,” Phys. Rev. A
, 33
, pp. 1134
–1140
.10.1103/PhysRevA.33.113423.
Kennel
, M. B.
, Brown
, R.
, and Abarbanel
, H.D.I
, 1992
, “Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,” Phys. Rev. A.
, 45
, pp. 3403
–3411
.10.1103/PhysRevA.45.340324.
Theiler
, J.
, 1986
, “Spurious Dimension From Correlation Algorithms Applied to Limited Time-Series Data
,” Phys. Rev. A
, 34
, pp. 2427
–2432
.10.1103/PhysRevA.34.2427Copyright © 2014 by ASME
You do not currently have access to this content.