In this paper, a hybrid quasi-static atomistic simulation method at finite temperature is developed, which combines the advantages of MD for thermal equilibrium and atomic-scale finite element method (AFEM) for efficient equilibration. Some temperature effects are embedded in static AFEM simulation by applying the virtual and equivalent thermal disturbance forces extracted from MD. Alternatively performing MD and AFEM can quickly obtain a series of thermodynamic equilibrium configurations such that a quasi-static process is modeled. Moreover, a stirring-accelerated MD/AFEM fast relaxation approach is proposed in which the atomic forces and velocities are randomly exchanged to artificially accelerate the “slow processes” such as mechanical wave propagation and thermal diffusion. The efficiency of the proposed methods is demonstrated by numerical examples on single wall carbon nanotubes.

References

1.
Sanchez-Portal
,
D.
,
Artacho
,
E.
,
Soler
,
J. M.
,
Rubio
,
A.
, and
Ordejon
,
P.
,
1999
, “
Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes
,”
Phys. Rev. B
,
59
(
19
), pp.
12678
12688
.10.1103/PhysRevB.59.12678
2.
Demczyk
,
B. G.
,
Wang
,
Y. M.
,
Cumings
,
J.
,
Hetman
,
M.
,
Han
,
W.
,
Zettl
,
A.
, and
Ritchie
,
R. O.
,
2002
, “
Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes
,”
Mat. Sci. Eng. A Struct. Mat. Prop. Microstruct. Process.
,
334
(
1–2
), pp.
173
178
.10.1016/S0921-5093(01)01807-X
3.
Zheng
,
Q. S.
, and
Jiang
,
Q.
,
2002
, “
Multiwalled Carbon Nanotubes as Gigahertz Oscillators
,”
Phys. Ref. Lett.
,
88
(
4
), p.
045503
.10.1103/PhysRevLett.88.045503
4.
Boland
,
J. J.
,
Wu
,
B.
, and
Heidelberg
,
A.
,
2005
, “
Mechanical Properties of Ultrahigh-Strength Gold Nanowires
,”
Nature Mater.
,
4
(
7
), pp.
525
529
.10.1038/nmat1403
5.
Huang
,
J. Y.
,
Chen
,
S.
,
Wang
,
Z. Q.
,
Kempa
,
K.
,
Wang
,
Y. M.
,
Jo
,
S. H.
,
Chen
,
G.
,
Dresselhaus
,
M. S.
, and
Ren
,
Z. F.
,
2006
, “
Superplastic Carbon Nanotubes—Conditions Have Been Discovered That Allow Extensive Deformation of Rigid Single-Walled Nanotubes.
,”
Nature
,
439
(
7074
), pp.
281
281
.10.1038/439281a
6.
Ma
,
W.
,
Liu
,
L.
,
Zhang
,
Z.
,
Yang
,
R.
,
Liu
,
G.
,
Zhang
,
T.
,
An
,
X.
,
Yi
,
X.
,
Ren
,
Y.
,
Niu
,
Z.
,
Li
,
J.
,
Dong
,
H.
,
Zhou
,
W.
,
Ajayan
,
P. M.
, and
Xie
,
S.
,
2009
, “
High-Strength Composite Fibers: Realizing True Potential of Carbon Nanotubes in Polymer Matrix Through Continuous Reticulate Architecture and Molecular Level Couplings
,”
Nano Lett.
,
9
(
8
), pp.
2855
2861
.10.1021/nl901035v
7.
Alder
,
B. J.
, and
Wainwright
,
T. E.
,
1957
, “
Phase Transition for a Hard Sphere System
,”
J. Chem. Phys.
,
27
(
5
), pp.
1208
1209
.10.1063/1.1743957
8.
Alder
,
B. J.
, and
Wainwright
,
T. E.
,
1959
, “
Studies in Molecular Dynamics. 1. General Method
,”
J. Chem. Phys.
,
31
(
2
), pp.
459
466
.10.1063/1.1730376
9.
Branício
,
P. S.
, and
Rino
,
J.-P.
,
2000
, “
Large Deformation and Amorphization of Ni Nanowires Under Uniaxial Strain: A Molecular Dynamics Study
,”
Phys. Rev. B
,
62
(
24
), pp.
16950
16955
.10.1103/PhysRevB.62.16950
10.
Wei
,
C. Y.
,
Cho
,
K. J.
, and
Srivastava
,
D.
,
2003
, “
Tensile Strength of Carbon Nanotubes Under Realistic Temperature and Strain Rate
,”
Phys. Rev. B
,
67
(
11
), p.
115407
.10.1103/PhysRevB.67.115407
11.
Koh
,
S. J. A.
,
Lee
,
H. P.
,
Lu
,
C.
, and
Cheng
,
Q. H.
,
2005
, “
Molecular Dynamics Simulation of a Solid Platinum Nanowire Under Uniaxial Tensile Strain: Temperature and Strain-Rate Effects
,”
Phys. Rev. B
,
72
(
8
), p.
085414
.10.1103/PhysRevB.72.085414
12.
Chen
,
Y. L.
,
Liu
,
B.
,
Huang
,
Y.
, and
Hwang
,
K. C.
,
2011
, “
Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites
,”
J. Nanomater.
,
2011
(
1
), p.
746029
. 10.1155/2011/746029
13.
Jennings
,
A. T.
,
Li
,
J.
, and
Greer
,
J. R.
,
2011
, “
Emergence of Strain-Rate Sensitivity in Cu Nanopillars: Transition From Dislocation Multiplication to Dislocation Nucleation
,”
Acta Materialia
,
59
(
14
), pp.
5627
5637
.10.1016/j.actamat.2011.05.038
14.
Al-Lafi
,
W.
,
Jin
,
J.
,
Xu
,
S. X.
, and
Song
,
M.
,
2010
, “
Performance of MWCNT/HDPE Nanocomposites at High Strain Rates
,”
Macromol. Mat. Eng.
,
295
(
6
), pp.
519
522
.10.1002/mame.200900374
15.
Lim
,
A. S.
,
An
,
Q.
,
Chou
,
T. W.
, and
Thostenson
,
E. T.
,
2011
, “
Mechanical and Electrical Response of Carbon Nanotube-Based Fabric Composites to Hopkinson Bar Loading
,”
Compos. Sci. Tech.
,
71
(
5
), pp.
616
621
.10.1016/j.compscitech.2010.12.025
16.
E. W. N.
,
Engquist
,
B.
, and
Huang
,
Z. Y.
,
2003
, “
Heterogeneous Multiscale Method: A General Methodology for Multiscale Modeling
,”
Phys. Rev. B
,
67
(
9
), pp.
92101
.10.1103/PhysRevB.67.092101
17.
Iannuzzi
,
M.
,
Laio
,
A.
, and
Parrinello
,
M.
,
2003
, “
Efficient Exploration of Reactive Potential Energy Surfaces Using Car-Parrinello Molecular Dynamics
,”
Phys. Rev. Lett.
,
90
(
23
), p.
238302
.10.1103/PhysRevLett.90.238302
18.
Dupuy
,
L. M.
,
Tadmor
,
E. B.
,
Miller
,
R. E.
, and
Phillips
,
R.
,
2005
, “
Finite-Temperature Quasicontinuum: Molecular Dynamics Without All the Atoms
,”
Phys. Rev. Lett.
,
95
(
6
), p.
060202
.10.1103/PhysRevLett.95.060202
19.
Zhou
,
M.
,
2005
, “
Thermomechanical Continuum Representation of Atomistic Deformation at Arbitrary Size Scales
,”
Proc. R. Soc. Math. Phys. Eng. Sci.
,
461
(
2063
), pp.
3437
3472
.10.1098/rspa.2005.1468
20.
Kulkarni
,
Y.
,
Knap
,
J.
, and
Ortiz
,
M.
,
2008
, “
A Variational Approach to Coarse Graining of Equilibrium and Non-Equilibrium Atomistic Description at Finite Temperature
,”
J. Mech. Phys. Solid.
,
56
(
4
), pp.
1417
1449
.10.1016/j.jmps.2007.09.005
21.
Branduardi
,
D.
,
Bussi
,
G.
, and
Parrinello
,
M.
,
2012
, “
Metadynamics With Adaptive Gaussians
,”
J. Chem. Theory Comp.
,
8
(
7
), pp.
2247
2254
.10.1021/ct3002464
22.
Parrinello
,
M.
, and
Rahman
,
A.
,
1981
, “
Polymorphic Transitions in Single-Crystals—A New Molecular-Dynamics Method
,”
J. Appl. Phys.
,
52
(
12
), pp.
7182
7190
.10.1063/1.328693
23.
Wang
,
J. H.
,
Li
,
J.
,
Yip
,
S.
,
Phillpot
,
S.
, and
Wolf
,
D.
,
1995
, “
Mechanical Instabilities of Homogeneous Crystals
,”
Phys. Rev. B
,
52
(
17
), pp.
12627
12635
.10.1103/PhysRevB.52.12627
24.
Falk
,
M. L.
, and
Langer
,
J. S.
,
1998
, “
Dynamics of Viscoplastic Deformation in Amorphous Solids
,”
Phys. Rev. E
,
57
(
6
), pp.
7192
7205
.10.1103/PhysRevE.57.7192
25.
Liu
,
B.
,
Huang
,
Y.
,
Jiang
,
H.
,
Qu
,
S.
, and
Hwang
,
K. C.
,
2004
, “
The Atomic-Scale Finite Element Method
,”
Comp. Meth. Appl. Mech. Eng.
,
193
(
17–20
), pp.
1849
1864
.10.1016/j.cma.2003.12.037
26.
Liu
,
B.
,
Jiang
,
H.
,
Huang
,
Y.
,
Qu
,
S.
,
Yu
,
M. F.
, and
Hwang
,
K. C.
,
2005
, “
Atomic-Scale Finite Element Method in Multiscale Computation With Applications to Carbon Nanotubes
,”
Phys. Rev. B
,
72
(
3
), p.
035435
.10.1103/PhysRevB.72.035435
27.
Lesar
,
R.
,
Najafabadi
,
R.
, and
Srolovitz
,
D. J.
,
1989
, “
Finite-Temperature Defect Properties From Free-Energy Minimization
,”
Phys. Rev. Lett.
,
63
(
6
), pp.
624
627
.10.1103/PhysRevLett.63.624
28.
Najafabadi
,
R.
, and
Srolovitz
,
D. J.
,
1995
, “
Evaluation of the Accuracy of the Free-Energy-Minimization Method
,”
Phys. Rev. B
,
52
(
13
), pp.
9229
9233
.10.1103/PhysRevB.52.9229
29.
Wang
,
H. Y.
,
Hu
,
M.
,
Xia
,
M. F.
,
Ke
,
F. J.
, and
Bai
,
Y. L.
,
2008
, “
Molecular/Cluster Statistical Thermodynamics Methods to Simulate Quasi-Static Deformations at Finite Temperature
,”
Int. J. Solid. Struct.
,
45
(
13
), pp.
3918
3933
.10.1016/j.ijsolstr.2007.12.023
30.
Jiang
,
H.
,
Huang
,
Y.
, and
Hwang
,
K. C.
,
2005
, “
A Finite-Temperature Continuum Theory Based on Interatomic Potentials
,”
J. Eng. Mat. Tech.
,
127
(
4
), pp.
408
416
.10.1115/1.2019865
31.
Iacobellis
,
V.
, and
Behdinan
,
K.
,
2012
, “
Multiscale Coupling Using a Finite Element Framework at Finite Temperature
,”
Int. J. Num. Meth. Eng.
,
92
(
7
), pp.
652
670
.10.1002/nme.4355
32.
Guo
,
W.
, and
Chang
T. Z.
,
2002
, “
Freezing Atom Method in Molecular Dynamics Simulation
,”
Int. J. Nonlin. Sci. Num. Sim.
,
3
(
3–4
), pp.
717
720
.10.1515/IJNSNS.2002.3.3-4.717
33.
Verlet
,
L.
,
1967
, “
Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard–Jones Molecules
,”
Phys. Rev.
,
159
(
1
), pp.
98
103
.10.1103/PhysRev.159.98
34.
Verlet
,
L.
,
1968
, “
Computer Experiments on Classical Fluids. 2. Equilibrium Correlation Functions
,”
Phys. Rev.
,
165
(
1
), pp.
201
214
.10.1103/PhysRev.165.201
35.
Hockney
,
R. W.
, and
Eastwood
,
J. W.
,
1981
,
Computer Simulation Using Particles
,
McGraw-Hill, New York
.
36.
Yakobson
,
B. I.
,
Dumitrica
,
T.
, and
Hua
,
M.
,
2006
, “
Symmetry-, Time-, and Temperature-Dependent Strength of Carbon Nanotubes
,”
Proc. Natl. Acad. Sci. USA
,
103
(
16
), pp.
6105
6109
.10.1073/pnas.0600945103
37.
Wang
,
X.
,
Li
,
Q.
,
Xie
,
J.
,
Jin
,
Z.
,
Wang
,
J.
,
Li
,
Y.
,
Jiang
,
K.
, and
Fan
,
S.
,
2009
, “
Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates
,”
Nano Lett.
,
9
(
9
), pp.
3137
3141
.10.1021/nl901260b
38.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1997
, “
High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes
,”
Computat. Mater. Sci.
,
8
(
4
), pp.
341
348
.10.1016/S0927-0256(97)00047-5
39.
Ruoff
,
R. S.
,
Yu
,
M. F.
,
Files
,
B. S.
, and
Arepalli
,
S.
,
2000
, “
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties
,”
Phys. Rev. Lett.
,
84
(
24
), pp.
5552
5555
.10.1103/PhysRevLett.84.5552
40.
Jose-Yacaman
,
M.
,
Troiani
,
H. E.
,
Miki-Yoshida
,
M.
,
Camacho-Bragado
,
G. A.
,
Marques
,
M.
A.
L.
,
Rubio
,
A.
, and
Ascencio
,
J. A.
,
2003
, “
Direct Observation of the Mechanical Properties of Single-Walled Carbon Nanotubes and Their Junctions at the Atomic Level
,”
Nano Lett.
,
3
(
6
), pp.
751
755
.10.1021/nl0341640
41.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (Rebo) Potential Energy Expression for Hydrocarbons
,”
J. Phys. Conden. Matt.
,
14
(
4
), pp.
783
802
.10.1088/0953-8984/14/4/312
42.
Nose
,
S.
,
1984
, “
A Molecular-Dynamics Method for Simulations in the Canonical Ensemble
,”
Molecular Phys.
,
52
(
2
), pp.
255
268
.10.1080/00268978400101201
43.
Hoover
,
W. G.
,
1985
, “
Canonical Dynamics—Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
(
3
), pp.
1695
1697
.10.1103/PhysRevA.31.1695
44.
Hone
,
J.
,
Lee
,
C.
,
Wei
,
X. D.
, and
Kysar
,
J. W.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.10.1126/science.1157996
45.
Xu
,
R.
,
Liu
,
B.
, and
Dong
,
Y.
,
2013
, “
Scalable Hierarchical Parallel Algorithm for the Solution of Super Large-Scale Sparse Linear Equations
,”
ASME J. Appl. Mech.
,
80
(
2
), pp.
020901
8
.10.1115/1.4023481
46.
Andersen
,
H. C.
,
1980
, “
Molecular-Dynamics Simulations at Constant Pressure and/or Temperature
,”
J. Chem. Phys.
,
72
(
4
), pp.
2384
2393
.10.1063/1.439486
47.
Jiang
,
H.
,
Yu
,
M. F.
,
Liu
,
B.
, and
Huang
,
Y.
,
2004
, “
Intrinsic Energy Loss Mechanisms in a Cantilevered Carbon Nanotube Beam Oscillator
,”
Phys. Rev. Lett.
,
93
(
18
), p
185501
.10.1103/PhysRevLett.93.185501
You do not currently have access to this content.