The deformation modes in magnesium nanocrystals during uniaxial tension, uniaxial compression, and pure bending are investigated using molecular dynamics (MD) simulations at room temperature. For each loading condition, the crystal orientation effects are studied by increasing the crystal c-axis orientation angle θ relative to the loading direction from 0 deg to 90 deg by a 15 deg increment. The simulation results reveal a number of different deformation modes and an obvious tension–compression asymmetry in magnesium nanocrystals. As the c-axis is rotated away from the tension loading direction, the deformation mode at yielding changes from tension twinning (θ ≤ 45 deg) to compression twinning (θ > 45 deg). For compression loading, yielding is dominated by only dislocation slip on the pyramidal (θ < 15 deg), basal (15 deg < θ < 60 deg) and prismatic (θ > 60 deg) planes. The nucleation stress in general decreases with increasing θ for both uniaxial tension and uniaxial compression loadings. For pure bending simulations, the yielding is mostly controlled by the weaker deformation mode between the compressive and tensile sides. The bending nucleation stress also decreases as the c-axis deviates away from the loading direction.

References

1.
Mises
,
R. V.
,
1928
, “
Mechanik der plastischen Formänderung von Kristallen
,”
J. Appl. Math. Mech.
,
8
(
3
), pp.
161
185
.10.1002/zamm.19280080302
2.
Yoo
,
M. H.
,
1981
, “
Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals
,”
Metall. Trans. A
,
12
(
3
), pp.
409
418
.10.1007/BF02648537
3.
Lilleodden
,
E.
,
2010
, “
Microcompression Study of Mg (0 0 0 1) Single Crystal
,”
Scr. Mater.
,
62
(
8
), pp.
532
535
.10.1016/j.scriptamat.2009.12.048
4.
Kim
,
G. S.
,
2011
, “
Small Volume Investigation of Slip and Twinning in Magnesium Single Crystals
,” Ph.D. thesis,
University of Grenoble
,
Grenoble, France
.
5.
Byer
,
C. M.
,
Li
,
B.
,
Cao
,
B.
, and
Ramesh
,
K. T.
,
2010
, “
Microcompression of Single-Crystal Magnesium
,”
Scr. Mater.
,
62
(
8
), pp.
536
539
.10.1016/j.scriptamat.2009.12.017
6.
Byer
,
C. M.
, and
Ramesh
,
K. T.
,
2013
, “
Effects of the Initial Dislocation Density on Size Effects in Single-Crystal Magnesium
,”
Acta Mater.
,
61
(
10
), pp.
3808
3818
.10.1016/j.actamat.2013.03.019
7.
Aitken
,
Z. H.
,
Fan
,
H.
,
El-Awady
,
J. A.
, and
Greer
,
J. R.
,
2015
, “
The Effect of Size, Orientation and Alloying on the Deformation of AZ31 Nanopillars
,”
J. Mech. Phys. Solids
,
76
, pp.
208
223
.10.1016/j.jmps.2014.11.014
8.
Yu
,
Q.
,
Qi
,
L.
,
Chen
,
K.
,
Mishra
,
R. K.
,
Li
,
J.
, and
Minor
,
A. M.
,
2012
, “
The Nanostructured Origin of Deformation Twinning
,”
Nano Lett.
,
12
(
2
), pp.
887
892
.10.1021/nl203937t
9.
Ye
,
J.
,
Mishra
,
R. K.
,
Sachdev
,
A. K.
, and
Minor
,
A. M.
,
2011
, “
In Situ TEM Compression Testing of Mg and Mg–0.2 wt.% Ce Single Crystals
,”
Scr. Mater.
,
64
(
3
), pp.
292
295
.10.1016/j.scriptamat.2010.09.047
10.
Prasad
,
K. E.
,
Rajesh
,
K.
, and
Ramamurty
,
U.
,
2014
, “
Micropillar and Macropillar Compression Responses of Magnesium Single Crystals Oriented for Single Slip or Extension Twinning
,”
Acta Mater.
,
65
, pp.
316
325
.10.1016/j.actamat.2013.10.073
11.
Luque
,
A.
,
Ghazisaeidi
,
M.
, and
Curtin
,
W. A.
,
2013
, “
Deformation Modes in Magnesium (0 0 0 1) and (01-11) Single Crystals: Simulations Versus Experiments
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
4
), p.
045010
.10.1088/0965-0393/21/4/045010
12.
Tang
,
Y.
, and
El-Awady
,
J. A.
,
2014
, “
Formation and Slip of Pyramidal Dislocations in Hexagonal Close-Packed Magnesium Single Crystals
,”
Acta Mater.
,
71
, pp.
319
332
.10.1016/j.actamat.2014.03.022
13.
Guo
,
Y.-F.
,
Xu
,
S.
,
Tang
,
X.-Z.
,
Wang
,
Y.-S.
, and
Yip
,
S.
,
2014
, “
Twinnability of HCP Metals at the Nanoscale
,”
J. Appl. Phys.
,
115
(
22
), p.
224902
.10.1063/1.4881756
14.
Fan
,
H.
,
Aubry
,
S.
,
Arsenlis
,
A.
, and
El-Awady
,
J. A.
,
2015
, “
The Role of Twinning Deformation on the Hardening Response of Polycrystalline Magnesium From Discrete Dislocation Dynamics Simulations
,”
Acta Mater.
,
92
, pp.
126
139
.10.1016/j.actamat.2015.03.039
15.
Fan
,
H.
,
Aubry
,
S.
,
Arsenlis
,
A.
, and
El-Awady
,
J. A.
,
2015
, “
Orientation Influence on Grain Size Effects in Ultrafine-Grained Magnesium
,”
Scr. Mater.
,
97
, pp.
25
28
.10.1016/j.scriptamat.2014.10.031
16.
Fan
,
H.
,
Aubry
,
S.
,
Arsenlis
,
A.
, and
El-Awady
,
J. A.
,
2015
, “
Discrete Dislocation Dynamics Simulations of Twin Size-Effects in Magnesium
,”
MRS Proc.
,
1741
, p. mrsf14-1741-aa1702-1702.10.1557/opl.2015.86
17.
Fan
,
H.
,
Aubry
,
S.
,
Arsenlis
,
A.
, and
El-Awady
,
J. A.
,
2015
, “
Grain Size Effects on Dislocation and Twinning Mediated Plasticity in Magnesium
,” Scr. Mater. (submitted).
18.
Obara
,
T.
,
Yoshinga
,
H.
, and
Morozumi
,
S.
,
1973
, “
{11-22}〈-1-123〉 Slip System in Magnesium
,”
Acta Metall.
,
21
(
7
), pp.
845
853
.10.1016/0001-6160(73)90141-7
19.
Stohr
,
J.-F.
,
Régnier
,
P.
, and
Dupouy
,
J.-M.
,
1971
, “
Glissement non basal dans le magnésium
,”
Mém. Sci. Rev. Metall.
,
LXVIII
(
1
), pp.
49
54
.
20.
Fan
,
H.
,
Hussein
,
A. M.
, and
El-Awady
,
J.
, 2015, “
Multiscale Modeling of the Size Effects on Plasticity in Metals
,”
Multiscale Mater. Modell. Nanomech.
(submitted).
21.
Fan
,
H.
, and
El-Awady
,
J. A.
,
2015
, “
Towards Resolving the Anonymity of Pyramidal Slip in Magnesium
,” Mater. Sci. Eng. A (submitted).
22.
Xie
,
Y. X.
, and
Hemker
,
K. J.
,
2015
, personal communication.
23.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
24.
Sun
,
D. Y.
,
Mendelev
,
M. I.
,
Becker
,
C. A.
,
Kudin
,
K.
,
Haxhimali
,
T.
,
Asta
,
M.
,
Hoyt
,
J. J.
,
Karma
,
A.
, and
Srolovitz
,
D. J.
,
2006
, “
Crystal-Melt Interfacial Free Energies in HCP Metals: A Molecular Dynamics Study of Mg
,”
Phys. Rev. B
,
73
(
2
), p.
024116
.10.1103/PhysRevB.73.024116
25.
Liu
,
X.-Y.
,
Adams
,
J. B.
,
Ercolessi
,
F.
, and
Moriarty
,
J. A.
,
1996
, “
EAM Potential for Magnesium From Quantum Mechanical Forces
,”
Modell. Simul. Mater. Sci. Eng.
,
4
(
3
), pp.
293
303
.10.1088/0965-0393/4/3/004
26.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—the Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.10.1088/0965-0393/18/1/015012
27.
Sun
,
Q.
,
Zhang
,
X. Y.
,
Ren
,
Y.
,
Tu
,
J.
, and
Liu
,
Q.
,
2014
, “
Interfacial Structure of {10–12} Twin Tip in Deformed Magnesium Alloy
,”
Scr. Mater.
,
90–91
, pp.
41
44
.10.1103/PhysRevB.73.024116
28.
Barrett
,
C. D.
,
El Kadiri
,
H.
, and
Tschopp
,
M. A.
,
2012
, “
Breakdown of the Schmid Law in Homogeneous and Heterogeneous Nucleation Events of Slip and Twinning in Magnesium
,”
J. Mech. Phys. Solids
,
60
(
12
), pp.
2084
2099
.10.1016/j.jmps.2012.06.015
29.
Aghababaei
,
R.
, and
Joshi
,
S. P.
,
2014
, “
Micromechanics of Tensile Twinning in Magnesium Gleaned From Molecular Dynamics Simulations
,”
Acta Mater.
,
69
, pp.
326
342
.10.1016/j.actamat.2014.01.014
30.
Stanford
,
N.
,
2008
, “
Observation of {1121} Twinning in a Mg-Based Alloy
,”
Philos. Mag. Lett.
,
88
(
5
), pp.
379
386
.10.1080/09500830802070793
31.
Yoo
,
M. H.
,
1969
, “
Interaction of Slip Dislocations With Twins in HCP Metals
,”
Trans. Metall. Soc. AIME
,
245
, pp.
1841
2114
.
32.
Yu
,
Q.
,
Shan
,
Z.-W.
,
Li
,
J.
,
Huang
,
X.
,
Xiao
,
L.
,
Sun
,
J.
, and
Ma
,
E.
,
2010
, “
Strong Crystal Size Effect on Deformation Twinning
,”
Nature
,
463
(
7279
), pp.
335
338
.10.1038/nature08692
33.
Gao
,
H.
, and
Huang
,
Y.
,
2003
, “
Geometrically Necessary Dislocation and Size-Dependent Plasticity
,”
Scr. Mater.
,
48
(
2
), pp.
113
118
.10.1016/S1359-6462(02)00329-9
34.
Gil Sevillano
,
J.
,
2008
, “
Geometrically Necessary Twins and Their Associated Size Effects
,”
Scr. Mater.
,
59
(
2
), pp.
135
138
.10.1016/j.scriptamat.2008.02.052
You do not currently have access to this content.