Interfacial shear stress transfer of a monolayer graphene on top of a polymer substrate subjected to uniaxial tension was investigated by a cohesive zone model integrated with a shear-lag model. Strain distribution in the graphene flake was found to behave in three stages in general, bonded, damaged, and debonded, as a result of the interfacial stress transfer. By fitting the cohesive-shear-lag model to our experimental results, the interface properties were identified including interface stiffness (74 Tpa/m), shear strength (0.50 Mpa), and mode II fracture toughness (0.08 N/m). Parametric studies showed that larger interface stiffness and/or shear strength can lead to better stress transfer efficiency, and high fracture toughness can delay debonding from occurring. 3D finite element simulations were performed to capture the interfacial stress transfer in graphene flakes with realistic geometries. The present study can provide valuable insight and design guidelines for enhancing interfacial shear stress transfer in nanocomposites, stretchable electronics and other applications based on graphene and other 2D nanomaterials.

References

1.
Wang
,
Y.
,
Yang
,
R.
,
Shi
,
Z. W.
,
Zhang
,
L. C.
,
Shi
,
D. X.
,
Wang
,
E.
, and
Zhang
,
G. Y.
,
2011
, “
Super-Elastic Graphene Ripples for Flexible Strain Sensors
,”
ACS Nano
,
5
(
5
), pp.
3645
3650
.10.1021/nn103523t
2.
Raju
,
A. P. A.
,
Lewis
,
A.
,
Derby
,
B.
,
Young
,
R. J.
,
Kinloch
,
I. A.
,
Zan
,
R.
, and
Novoselov
,
K. S.
,
2014
, “
Wide-Area Strain Sensors Based Upon Graphene–Polymer Composite Coatings Probed by Raman Spectroscopy
,”
Adv. Funct. Mater.
,
24
(
19
), pp.
2865
2874
.10.1002/adfm.201302869
3.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.10.1126/science.1182383
4.
Kim
,
R.-H.
,
Bae
,
M.-H.
,
Kim
,
D. G.
,
Cheng
,
H.
,
Kim
,
B. H.
,
Kim
,
D.-H.
,
Li
,
M.
,
Wu
,
J.
,
Du
,
F.
,
Kim
,
H.-S.
,
Kim
,
S.
,
Estrada
,
D.
,
Hong
,
S. W.
,
Huang
,
Y.
,
Pop
,
E.
, and
Rogers
,
J. A.
,
2011
, “
Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates
,”
Nano Lett.
,
11
(
9
), pp.
3881
3886
.10.1021/nl202000u
5.
Young
,
R. J.
,
Kinloch
, I
. A.
,
Gong
,
L.
, and
Novoselov
,
K. S.
,
2012
, “
The Mechanics of Graphene Nanocomposites: A Review
,”
Compos. Sci. Technol.
,
72
(
12
), pp.
1459
1476
.10.1016/j.compscitech.2012.05.005
6.
Ramanathan
,
T.
,
Abdala
,
A. A.
,
Stankovich
,
S.
,
Dikin
,
D. A.
,
Herrera Alonso
,
M.
,
Piner
,
R. D.
,
Adamson
,
D. H.
,
Schniepp
,
H. C.
,
Chen
,
X.
,
Ruoff
,
R. S.
,
Nguyen
,
S. T.
,
Aksay
, I
. A.
,
Prud'Homme
,
R. K.
, and
Brinson
,
L. C.
,
2008
, “
Functionalized Graphene Sheets for Polymer Nanocomposites
,”
Nat. Nanotechnol.
,
3
(
6
), pp.
327
331
.10.1038/nnano.2008.96
7.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.-Z.
, and
Koratkar
,
N.
,
2009
, “
Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content
,”
ACS Nano
,
3
(
12
), pp.
3884
3890
.10.1021/nn9010472
8.
Lee
,
C.
,
Wei
,
X. D.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.10.1126/science.1157996
9.
Lee
,
G. H.
,
Cooper
,
R. C.
,
An
,
S. J.
,
Lee
,
S.
,
van der Zande
,
A.
,
Petrone
,
N.
,
Hammerherg
,
A. G.
,
Lee
,
C.
,
Crawford
,
B.
,
Oliver
,
W.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2013
, “
High-Strength Chemical-Vapor Deposited Graphene and Grain Boundaries
,”
Science
,
340
(
6136
), pp.
1073
1076
.10.1126/science.1235126
10.
Zhang
,
P.
,
Ma
,
L.
,
Fan
,
F.
,
Zeng
,
Z.
,
Peng
,
C.
,
Loya
,
P. E.
,
Liu
,
Z.
,
Gong
,
Y.
,
Zhang
,
J.
,
Zhang
,
X.
,
Ajayan
,
P. M.
,
Zhu
,
T.
, and
Lou
,
J.
,
2014
, “
Fracture Toughness of Graphene
,”
Nat. Commun.
,
5
, p.
3782
.10.1038/ncomms4782
11.
Rasool
,
H. I.
,
Ophus
,
C.
,
Klug
,
W. S.
,
Zettl
,
A.
, and
Gimzewski
,
J. K.
,
2013
, “
Measurement of the Intrinsic Strength of Crystalline and Polycrystalline Graphene
,”
Nat. Commun.
,
4
, p.
2881
.10.1038/ncomms3811
12.
Jia
,
Y. Y.
,
Chen
,
Z. R.
, and
Yan
,
W. Y.
,
2014
, “
A Numerical Study on Carbon Nanotube–Hybridized Carbon Fibre Pullout
,”
Compos. Sci. Technol.
,
91
, pp.
38
44
.10.1016/j.compscitech.2013.11.020
13.
Kulkarni
,
M.
,
Carnahan
,
D.
,
Kulkarni
,
K.
,
Qian
,
D.
, and
Abot
,
J. L.
,
2010
, “
Elastic Response of a Carbon Nanotube Fiber Reinforced Polymeric Composite: A Numerical and Experimental Study
,”
Composites Part B
,
41
(
5
), pp.
414
421
.10.1016/j.compositesb.2009.09.003
14.
Toth
,
F.
,
Rammerstorfer
,
F. G.
,
Cordill
,
M. J.
, and
Fischer
,
F. D.
,
2013
, “
Detailed Modelling of Delamination Buckling of Thin Films Under Global Tension
,”
Acta Mater.
,
61
(
7
), pp.
2425
2433
.10.1016/j.actamat.2013.01.014
15.
Sun
,
J. Y.
,
Lu
,
N. S.
,
Yoon
,
J.
,
Oh
,
K. H.
,
Suo
,
Z. G.
, and
Vlassak
,
J. J.
,
2012
, “
Debonding and Fracture of Ceramic Islands on Polymer Substrates
,”
J. Appl. Phys.
,
111
(
1
), p.
013517
.10.1063/1.3673805
16.
Gong
,
L.
,
Kinloch
, I
. A.
,
Young
,
R. J.
,
Riaz
,
I.
,
Jalil
,
R.
, and
Novoselov
,
K. S.
,
2010
, “
Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite
,”
Adv. Mater.
,
22
(
24
), pp.
2694
2697
.10.1002/adma.200904264
17.
Young
,
R. J.
,
Gong
,
L.
,
Kinloch
, I
. A.
,
Riaz
,
I.
,
Jalil
,
R.
, and
Novoselov
,
K. S.
,
2011
, “
Strain Mapping in a Graphene Monolayer Nanocomposite
,”
ACS Nano
,
5
(
4
), pp.
3079
3084
.10.1021/nn2002079
18.
Jiang
,
T.
,
Huang
,
R.
, and
Zhu
,
Y.
,
2014
, “
Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate
,”
Adv. Funct. Mater.
,
24
(
3
), pp.
396
402
.10.1002/adfm.201301999
19.
Srivastava
,
I.
,
Mehta
,
R. J.
,
Yu
,
Z.-Z.
,
Schadler
,
L.
, and
Koratkar
,
N.
,
2011
, “
Raman Study of Interfacial Load Transfer in Graphene Nanocomposites
,”
Appl. Phys. Lett.
,
98
(
6
), p.
063102
.10.1063/1.3552685
20.
Tsoukleri
,
G.
,
Parthenios
,
J.
,
Papagelis
,
K.
,
Jalil
,
R.
,
Ferrari
,
A. C.
,
Geim
,
A. K.
,
Novoselov
,
K. S.
, and
Galiotis
,
C.
,
2009
, “
Subjecting a Graphene Monolayer to Tension and Compression
,”
Small
,
5
(
21
), pp.
2397
2402
.10.1002/smll.200900802
21.
Yu
,
T.
,
Ni
,
Z.
,
Du
,
C.
,
You
,
Y.
,
Wang
,
Y.
, and
Shen
,
Z.
,
2008
, “
Raman Mapping Investigation of Graphene on Transparent Flexible Substrate: The Strain Effect
,”
J. Phys. Chem. C
,
112
(
33
), pp.
12602
12605
.10.1021/jp806045u
22.
Zu
,
M.
,
Li
,
Q.
,
Zhu
,
Y.
,
Zhu
,
Y.
,
Wang
,
G.
,
Byun
,
J.-H.
, and
Chou
,
T.-W.
,
2013
, “
Stress Relaxation in Carbon Nanotube-Based Fibers for Load-Bearing Applications
,”
Carbon
,
52
, pp.
347
355
.10.1016/j.carbon.2012.09.036
23.
Koenig
,
S. P.
,
Boddeti
,
N. G.
,
Dunn
,
M. L.
, and
Bunch
,
J. S.
,
2011
, “
Ultrastrong Adhesion of Graphene Membranes
,”
Nat. Nanotechnol.
,
6
(
9
), pp.
543
546
.10.1038/nnano.2011.123
24.
Zong
,
Z.
,
Chen
,
C. L.
,
Dokmeci
,
M. R.
, and
Wan
,
K. T.
,
2010
, “
Direct Measurement of Graphene Adhesion on Silicon Surface by Intercalation of Nanoparticles
,”
J. Appl. Phys.
,
107
(
2
), p.
026104
.10.1063/1.3294960
25.
Yoon
,
T.
,
Shin
,
W. C.
,
Kim
,
T. Y.
,
Mun
,
J. H.
,
Kim
,
T. S.
, and
Cho
,
B. J.
,
2012
, “
Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process
,”
Nano Lett.
,
12
(
3
), pp.
1448
1452
.10.1021/nl204123h
26.
Cao
,
Z.
,
Wang
,
P.
,
Gao
,
W.
,
Tao
,
L.
,
Suk
,
J. W.
,
Ruoff
,
R. S.
,
Akinwande
,
D.
,
Huang
,
R.
, and
Liechti
,
K. M.
,
2014
, “
A Blister Test for Interfacial Adhesion of Large-Scale Transferred Graphene
,”
Carbon
,
69
, pp.
390
400
.10.1016/j.carbon.2013.12.041
27.
Boddeti
,
N. G.
,
Koenig
,
S. P.
,
Long
,
R.
,
Xiao
,
J.
,
Bunch
,
J. S.
, and
Dunn
,
M. L.
,
2013
, “
Mechanics of Adhered, Pressurized Graphene Blisters
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
040909
.10.1115/1.4024255
28.
Amnaya
,
P. A.
,
Dimitris
,
C. L.
, and
Daniel
,
C. H.
,
2009
, “
Modeling of Graphene–Polymer Interfacial Mechanical Behavior Using Molecular Dynamics
,”
Modell. Simul. Mater. Sci. Eng.
,
17
(
1
), p.
015002
.10.1088/0965-0393/17/1/015002
29.
Safaei
,
M.
,
Sheidaei
,
A.
,
Baniassadi
,
M.
,
Ahzi
,
S.
,
Mosavi Mashhadi
,
M.
, and
Pourboghrat
,
F.
,
2015
, “
An Interfacial Debonding-Induced Damage Model for Graphite Nanoplatelet Polymer Composites
,”
Comput. Mater. Sci.
,
96
(
Pt. A
), pp.
191
199
.10.1016/j.commatsci.2014.08.036
30.
Ryu
,
S. K.
,
Jiang
,
T. F.
,
Im
,
J.
,
Ho
,
P. S.
, and
Huang
,
R.
,
2014
, “
Thermomechanical Failure Analysis of Through-Silicon Via Interface Using a Shear-Lag Model With Cohesive Zone
,”
IEEE Trans. Device Mater. Reliab.
,
14
(
1
), pp.
318
326
.10.1109/TDMR.2013.2261300
31.
Yang
,
B.
, and
Mall
,
S.
,
2003
, “
Cohesive-Shear-Lag Model for Cycling Stress–Strain Behavior of Unidirectional Ceramic Matrix Composites
,”
Int. J. Damage Mech.
,
12
(
1
), pp.
45
64
.10.1177/1056789503012001003
32.
De Lorenzis
,
L.
, and
Zavarise
,
G.
,
2009
, “
Cohesive Zone Modeling of Interfacial Stresses in Plated Beams
,”
Int. J. Solids Struct.
,
46
(
24
), pp.
4181
4191
.10.1016/j.ijsolstr.2009.08.010
33.
Barenblatt
,
G. I.
,
1959
, “
The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypotheses. Axially-Symmetric Cracks
,”
J. Appl. Math. Mech.
,
23
(
3
), pp.
622
636
.10.1016/0021-8928(59)90157-1
34.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.10.1016/0022-5096(60)90013-2
35.
Jiang
,
L. Y.
,
Huang
,
Y.
,
Jiang
,
H.
,
Ravichandran
,
G.
,
Gao
,
H.
,
Hwang
,
K. C.
, and
Liu
,
B.
,
2006
, “
A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the van der Waals Force
,”
J. Mech. Phys. Solids
,
54
(
11
), pp.
2436
2452
.10.1016/j.jmps.2006.04.009
36.
Alfano
,
G.
,
2006
, “
On the Influence of the Shape of the Interface Law on the Application of Cohesive-Zone Models
,”
Compos. Sci. Technol.
,
66
(
6
), pp.
723
730
.10.1016/j.compscitech.2004.12.024
37.
Needleman
,
A.
,
1990
, “
An Analysis of Tensile Decohesion Along an Interface
,”
J. Mech. Phys. Solids
,
38
(
3
), pp.
289
324
.10.1016/0022-5096(90)90001-K
38.
Cox
,
H. L.
,
1952
, “
The Elasticity and Strength of Paper and Other Fibrous Materials
,”
Br. J. Appl. Phys.
,
3
(
3
), pp.
72
79
.10.1088/0508-3443/3/3/302
39.
ABAQUS
,
2010
, “
abaqus 6.10 Documentation
,”
Dassault Systemes Simulia Corp.
, Johnston, RI.
40.
Lee
,
S. K.
,
Kim
,
B. J.
,
Jang
,
H.
,
Yoon
,
S. C.
,
Lee
,
C.
,
Hong
,
B. H.
,
Rogers
,
J. A.
,
Cho
,
J. H.
, and
Ahn
,
J. H.
,
2011
, “
Stretchable Graphene Transistors With Printed Dielectrics and Gate Electrodes
,”
Nano Lett.
,
11
(
11
), pp.
4642
4646
.10.1021/nl202134z
You do not currently have access to this content.