Abstract

A review of the pertinent literature related to the dynamic expansion of a spherical/cylindrical cavity shows that all the solutions with kinematic boundary conditions deal with a constant velocity at the cavity boundary. This paper develops a new general solution of the nonstationary dynamic problem of cavity expansion, which allows the application of time-dependent motion conditions at the cavity boundary. This solution can be used, for example, in the development of approximate approaches for projectiles penetrating with a non-constant velocity into different targets. Due to the complexity of the nonlinear nonstationary problem, an analytical solution of the problem may be developed if simplified constitutive relationships are used. In the present model, a simplified material model with a locked equation of state and a linear shear failure relationship is implemented. This solution may be applied to different materials such as concrete, soil, and rock. Special cases of the newly developed nonstationary solution are compared with different spherical and cylindrical cavity expansions solutions reported in the literature, and a good agreement is obtained. The capability of the present model is demonstrated in a following investigation of representative cases of cavity expansion with zero, constant, and variable acceleration of the cavity boundary. A significant difference in the stress variation for the different cases is shown. Along with the general solution which deals with an elastic–plastic region, a simplified solution which disregards the contribution of the elastic region is presented and the evaluation of the elastic region effect may be assessed.

References

1.
Yankelevsky
,
D. Z.
, and
Adin
,
M. A.
,
1980
, “
A Simplified Analytical Method for Soil Penetration Analysis
,”
Int. J. Anal. Numer. Methods Geomech.
,
4
(
3
), pp.
233
254
. 10.1002/nag.1610040304
2.
Forrestal
,
M. J.
,
Norwood
,
F. R.
, and
Longcope
,
D. B.
,
1981
, “
Penetration Into Targets Described by Locked Hydrostats and Shear Strength
,”
Int. J. Solids Struct.
,
17
(
9
), pp.
915
924
. 10.1016/0020-7683(81)90106-2
3.
Forrestal
,
M. J.
,
1986
, “
Penetration Into Dry Porous Rock
,”
Int. J. Solids Struct.
,
22
(
12
), pp.
1485
1500
. 10.1016/0020-7683(86)90057-0
4.
Forrestal
,
M. J.
, and
Tzou
,
D. Y.
,
1997
, “
A Spherical Cavity-Expansion Penetration Model for Concrete Targets
,”
Int. J. Solids Struct.
,
34
(
31–32
), pp.
4127
4146
. 10.1016/S0020-7683(97)00017-6
5.
Warren
,
T. L.
, and
Forquin
,
P.
,
2016
, “
Penetration of Common Ordinary Strength Water Saturated Concrete Targets by Rigid Ogive-Nosed Steel Projectiles
,”
Int. J. Impact Eng.
,
90
(
4
), pp.
37
45
. 10.1016/j.ijimpeng.2015.11.003
6.
Johnsen
,
J.
,
Holmen
,
J. K.
,
Warren
,
T. L.
, and
Børvik
,
T.
,
2018
, “
Cylindrical Cavity Expansion Approximations Using Different Constitutive Models for the Target Material
,”
Int. J. Prot. Struct.
,
9
(
2
), pp.
199
225
. 10.1177/2041419617741321
7.
Guo
,
X. J.
,
He
,
T.
, and
Wen
,
H. M.
,
2013
, “
Cylindrical Cavity Expansion Penetration Model for Concrete Targets With Shear Dilatancy
,”
J. Eng. Mech.
,
139
(
9
), pp.
1260
1267
. 10.1061/(ASCE)EM.1943-7889.0000547
8.
Christescu
,
N.
,
2007
,
Dynamic Plasticity
,
World Scientific Publishing Co. Pte. Ltd.
,
Singapore
.
9.
Hill
,
R.
,
1948
,
A Theory of Earth Movement Near a Deep Underground Explosion
,
Armament. Research Establishment, Fort Halstead. Memo No. 21-48
,
Kent, UK
.
10.
Hunter
,
S. C.
, and
Crozier
,
R. J. M.
,
1968
, “
Similarity Solution for the Rapid Uniform Expansion of a Spherical Cavity in a Compressible Elastic-Plastic Solid
,”
Q. J. Mech. Appl. Math.
,
21
(
4
), pp.
467
486
. 10.1093/qjmam/21.4.467
11.
Novacki
,
W. K.
,
1978
,
Stress Waves in Non-Elastic Solids
,
Pergamon Press
,
New York
.
12.
Forrestal
,
M. J.
, and
Luk
,
L.
,
1992
, “
Penetration Into Soil Targets
,”
Int. J. Impact Eng.
,
12
(
3
), pp.
427
444
. 10.1016/0734-743X(92)90167-R
13.
Forrestal
,
M. J.
,
Altman
,
B. S.
,
Cargile
,
J. D.
, and
Hanchak
,
S. J.
,
1994
, “
An Empirical Equation for Penetration Depth of Ogive-Nose Projectiles Into Concrete Targets
,”
Int. J. Impact Eng
.,
15
(
4
), pp.
395
405
. 10.1016/0734-743X(94)80024-4
14.
Forrestal
,
M. J.
,
Tzou
,
D. Y.
,
Askari
,
E.
, and
Longscope
,
B. D.
,
1995
, “
Penetration Into Ductile Metal Targets With Rigid Spherical-Nose Rods
,”
Int. J. Impact Eng.
,
16
(
5
), pp.
699
710
. 10.1016/0734-743X(95)00005-U
15.
Warren
,
T. L.
,
Forrestal
,
M. J.
, and
Randles
,
P. W.
,
2014
, “
Evaluation of Large Amplitude Deceleration Data From Projectile Penetration Into Concrete Targets
,”
Exp. Mech.
,
54
(
2
), pp.
241
253
. 10.1007/s11340-013-9767-9
16.
Luk
,
V. K.
,
Forrestal
,
M. J.
, and
Amos
,
D. E.
,
1991
, “
Dynamic Spherical Cavity-Expansion of Strain-Hardening Materials
,”
Trans. ASME J. Appl. Mech.
,
58
(
1
), pp.
1
6
. 10.1115/1.2897150
17.
Frew
,
D. J.
,
Hanchak
,
S. J.
,
Green
,
M. L.
, and
Forrestal
,
M. J.
,
1998
, “
Penetration of Concrete Targets With Ogive-Nose Steel Rods
,”
Int. J. Impact Eng.
,
21
(
6
), pp.
489
497
. 10.1016/S0734-743X(98)00008-6
18.
Forrestal
,
M. J.
,
Norwood
,
F. R.
, and
Longcope
,
D. B.
,
1981
, “
A Model to Estimate Forces on Conical Penetrators Into Dry Porous Rock
,”
ASME J. Appl. Mech.
,
48
(
1
), pp.
25
29
. 10.1115/1.3157587
19.
Forrestal
,
M. J.
, and
Longcope
,
D. B.
,
1990
, “
Target Strength of Ceramic Materials for High Velocity Penetration
,”
J. Appl. Phys.
,
67
(
8
), pp.
3669
3672
. 10.1063/1.345322
20.
Durban
,
D.
, and
Baruch
,
M.
,
1976
, “
On the Problem of a Spherical Cavity in an Infinite Elasto-Plastic Medium
,”
ASME J. Appl. Mech.
,
43
(
4
), pp.
633
638
. 10.1115/1.3423946
21.
Masri
,
R.
, and
Durban
,
D.
,
2006
, “
Quasi-Static Cylindrical Cavity Expansion in an Elastoplastic Compressible Mises Solid
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7518
7533
. 10.1016/j.ijsolstr.2006.03.012
22.
Masri
,
R.
, and
Durban
,
D.
,
2006
, “
Dynamic Cylindrical Cavity Expansion in an Incompressible Elastoplastic Medium
,”
Acta Mech.
,
181
(
1–2
), pp.
105
123
. 10.1007/s00707-005-0245-z
23.
Masri
,
R.
, and
Durban
,
D.
,
2007
, “
Cylindrical Cavity Expansion in Compressible Mises and Tresca Solids
,”
Eur. J. Mech. A/Solids
,
26
(
4
), pp.
712
727
. 10.1016/j.euromechsol.2006.12.003
24.
Durban
,
D.
, and
Fleck
,
N. A.
,
1997
, “
Spherical Cavity Expansion in a Drucker–Prager Solid
,”
ASME J. Appl. Mech.
,
64
(
4
), pp.
743
750
. 10.1115/1.2788978
25.
Durban
,
D.
, and
Masri
,
R.
,
2004
, “
Dynamic Spherical Cavity Expansion in a Pressure Sensitive Elastoplastic Medium
,”
Int. J. Solids Struct.
,
41
(
20
), pp.
5697
5716
. 10.1016/j.ijsolstr.2004.03.009
26.
Jun
,
F.
,
Wenbin
,
L.
,
Xiaoming
,
W.
,
Meili
,
S.
,
Huaqing
,
R.
, and
Weibing
,
L.
,
2015
, “
Dynamic Spherical Cavity Expansion Analysis of Rate-Dependent Concrete Material With Scale Effect
,”
Int. J. Impact Eng.
,
84
(
10
), pp.
24
37
. 10.1016/j.ijimpeng.2015.05.005
27.
Durban
,
D.
, and
Kubi
,
M.
,
1992
, “
A General Solution for the Pressurized Elastoplastic Tube
,”
Trans. ASME
,
59
(
1
), pp.
20
26
. 10.1115/1.2899431
28.
Durban
,
D.
,
Cohen
,
T.
, and
Hollander
,
Y.
,
2010
, “
Plastic Response of Porous Solids With Pressure Sensitive Matrix
,”
Mech. Res. Commun.
,
37
(
7
), pp.
636
641
. 10.1016/j.mechrescom.2010.09.002
29.
Chadwick
,
P.
,
1959
, “
The Quasi-Static Expansion of a Spherical Cavity in Metals and Ideal Soils
,”
Quart. J. Mech. Appl. Math.
,
12
(
Part 1
), pp.
52
71
. 10.1093/qjmam/12.1.52
30.
Bigoni
,
D.
, and
Laudiero
,
F.
,
1989
, “
The Quasi-Static Finite Cavity Expansion in a Non-standard Elasto-Plastic Medium
,”
Int. J. Mech. Sci.
,
31
(
11-12
), pp.
825
837
. 10.1016/0020-7403(89)90027-1
31.
Yu
,
H. S.
, and
Houlsby
,
G. T.
,
1991
, “
Finite Cavity Expansion in Dilatant Soils: Loading Analysis
,”
Geotechnique
,
41
(
2
), pp.
173
183
. 10.1680/geot.1991.41.2.173
32.
Luk
,
V. K.
, and
Forrestal
,
M. J.
,
1987
, “
Penetration Into Semi-Infinite Reinforced Concrete Targets With Spherical and Ogival Nose Projectiles
,”
Int. J. Impact Eng.
,
6
(
4
), pp.
291
301
. 10.1016/0734-743X(87)90096-0
33.
Warren
,
T. L.
,
2016
, “
The Effect of Target Inertia on the Penetration of Aluminum Targets by Rigid Ogive-Nosed Long Rods
,”
Int. J. Impact Eng.
,
91
(
5
), pp.
6
13
. 10.1016/j.ijimpeng.2015.12.007
34.
Wu
,
X. Y.
,
Ramesh
,
K. T.
, and
Wright
,
T. W.
,
2003
, “
The Dynamic Growth of a Single Void in a Viscoplastic Material Under Transient Hydrostatic Loading
,”
J. Mech. Phys. Solids
,
51
(
1
), pp.
1
26
. 10.1016/S0022-5096(02)00079-0
35.
Wilkerson
,
J. W.
, and
Ramesh
,
K. T.
,
2014
, “
A Dynamic Void Growth Model Governed by Dislocation Kinetics
,”
J. Mech. Phys. Solids
,
70
(
10
), pp.
262
280
. 10.1016/j.jmps.2014.05.018
36.
Ortiz
,
M.
, and
Molinari
,
A.
,
1992
, “
Effect of Strain Hardening and Rate Sensitivity on the Dynamic Growth of a Void in a Plastic Material
,”
ASME J. Appl. Mech.
,
59
(
1
), pp.
48
53
. 10.1115/1.2899463
37.
Wright
,
T. W.
, and
Ramesh
,
K. T.
,
2008
, “
Dynamic Void Nucleation and Growth in Solids: A Self-Consistent Statistical Theory
,”
J. Mech. Phys. Solids
,
56
(
2
), pp.
336
359
. 10.1016/j.jmps.2007.05.012
38.
Wu
,
X. Y.
,
Ramesh
,
K. T.
, and
Wright
,
T. W.
,
2003
, “
The Effects of Thermal Softening and Heat Conduction on the Dynamic Growth of Voids
,”
Int. J. Solids Struct.
,
40
(
17
), pp.
4461
4478
. 10.1016/S0020-7683(03)00214-2
39.
Molinari
,
A.
, and
Wright
,
T. W.
,
2005
, “
A Physical Model for Nucleation and Early Growth of Voids in Ductile Materials Under Dynamic Loading
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1476
1504
. 10.1016/j.jmps.2005.02.010
40.
Wu
,
X. Y.
,
Ramesh
,
K. T.
, and
Wright
,
T. W.
,
2003
, “
The Coupled Effects of Plastic Strain Gradient and Thermal Softening on the Dynamic Growth of Voids
,”
Int. J. Solids Struct.
,
40
(
24
), pp.
6633
6651
. 10.1016/S0020-7683(03)00439-6
41.
Nguyen
,
T.
,
Luscher
,
D. J.
, and
Wilkerson
,
J. W.
,
2017
, “
A Dislocation-Based Crystal Plasticity Framework for Dynamic Ductile Failure of Single Crystals
,”
J. Mech. Phys. Solids
,
108
(
11
), pp.
1
29
. 10.1016/j.jmps.2017.07.020
42.
Nguyen
,
T.
,
Luscher
,
D. J.
, and
Wilkerson
,
J. W.
,
2019
, “
The Role of Elastic and Plastic Anisotropy in Intergranular Spall Failure
,”
Acta Mater.
,
168
(
4
), pp.
1
12
. 10.1016/j.actamat.2019.01.033
43.
Nguyen
,
T.
,
Luscher
,
D. J.
, and
Wilkerson
,
J. W.
,
2020
, “
A Physics-Based Model and Simple Scaling Law to Predict the Pressure Dependence of Single Crystal Spall Strength
,”
J. Mech. Phys. Solids
,
137
(
4
), pp.
1
22
. 10.1016/j.jmps.2020.103875
44.
Tang
,
X. C.
,
Nguyen
,
T.
,
Yao
,
X. H.
, and
Wilkerson
,
J. W.
,
2020
, “
A Cavitation and Dynamic Void Growth Model for a General Class of Strain-Softening Amorphous Materials
,”
J. Mech. Phys. Solids
,
141
(
8
), pp.
1
18
. 10.1016/j.jmps.2020.104023
45.
Wilkerson
,
J. W.
,
2017
, “
On the Micromechanics of Void Dynamics at Extreme Rates
,”
Int. J. Plast.
,
95
(
8
), pp.
21
42
. 10.1016/j.ijplas.2017.03.008
46.
Prager
,
W.
,
1957
, “
On Ideal Locking Materials
,”
Trans. Society Rheol.
,
1
(
1
), pp.
169
175
. 10.1122/1.548818
47.
Demengel
,
F.
, and
Suquet
,
P.
,
1986
, “
On Locking Materials
,”
Acta Appl. Mathe.
,
6
(
2
), pp.
185
211
. 10.1007/BF00046725
48.
Salvadori
,
M. G.
,
Skalak
,
R.
, and
Weidlinger
,
R.
,
1955
, “
Stress Waves in Dissipative Media
,”
Trans. N.Y. Acad. Sci. Ser. II
,
21
(
5 Series II
), pp.
427
434
. 10.1111/j.2164-0947.1959.tb01679.x
49.
Weidlinger
,
P.
,
1960
,
On the Application of the Theory of Locking Media to Ground Shock Phenomena
.
The MITRE Corporation
, Report SR-18, 26 September 1960.
50.
Cizek
,
J
,
1985
, “
Response of Geologic Materials to Blast Loading and Impact
,”
ASCE/ASME Mechanics Conference
,
Albuquerque, NM
,
June 24–26
.
51.
Dresner
,
L.
,
1973
, “
Propagation of Pressure Waves in Bubble-Filled Liquids
,”
J. Appl. Phys.
,
44
(
2
), pp.
680
686
. 10.1063/1.1662244
52.
Lundberg
,
B.
,
1974
, “
Impact Energy Absorption by a Rate-Dependent Locking Target
,”
Appl. Sci. Res.
,
29
(
4
), pp.
305
318
. 10.1007/BF00384154
53.
Schmidt
,
M. J.
,
2003
, “
High Pressure and High Strain Rate Behaviour of Cementitious Materials: Experiments and Elastic/Viscoplastic Modeling
,” Ph.D. dissertation,
University of Florida
,
Gainesville, FL
.
54.
Feldgun
,
V. R.
, and
Yankelevsky
,
D. Z.
,
2020
, “
The Optimal Nose Shape of a Projectile Penetrating Into Targets Described by a Locked Hydrostat and a Linear Shear Failure Relationship
,”
Int. J. Solids Struct.
,
200–201
(
9
), pp.
119
131
. 10.1016/j.ijsolstr.2020.05.012
55.
Norwood
,
F. R.
, and
Sears
,
M. P.
,
1982
, “
A Nonlinear Model for the Dynamics of Penetration Into Geological Targets
,”
ASME J. Appl. Mech.
,
49
(
1
), pp.
26
30
. 10.1115/1.3162065
56.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
Oxford, London
.
57.
Forrestal
,
M. J.
, and
Longcope
,
D. B.
,
1982
, “
Closed-Form Solutions for Forces on Conical-Nosed Penetrators Into Geological Targets With Constant Shear Strength
,”
Mech. Mater.
,
1
(
4
), pp.
285
295
. 10.1016/0167-6636(82)90028-X
58.
Forrestal
,
M. J.
, and
Luk
,
V. K.
,
1988
, “
Dynamic Spherical Cavity-Expansion in a Compressible Elastic-Plastic Solid
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
275
279
. 10.1115/1.3173672
59.
Longcope
,
D. B.
, and
Forrestal
,
M. J.
,
1983
, “
Penetration of Targets Described by a Mohr-Coulomb Failure Criterion With a Tension Cutoff.
,”
ASME J. Appl. Mech. SO
,
50
(
2
), pp.
327
333
. 10.1115/1.3167040
60.
Feldgun
,
V. R.
, and
Yankelevsky
,
D. Z.
,
2020
, “
Quasi-Static Spherical/Cylindrical Cavity Expansion in a Medium With an Arbitrary Equation of State and a Shear Strength Plasticity Envelope
,”
Int. J. Solids Struct.
,
191–192
(
5
), pp.
146
156
. 10.1016/j.ijsolstr.2019.12.004
You do not currently have access to this content.