Abstract

Piezoelectric metamaterials have received extensive attention in the fields of robotics, nondestructive testing, energy harvesting, etc. Natural piezoelectric ceramics possess only five nonzero piezoelectric coefficients due to the crystal symmetry of ∞mm, which has limited the development of related devices. To obtain nonzero piezoelectric coefficients, previous studies mainly focus on assembling piezoelectric ceramic units or multiphase metamaterials. However, only part of the nonzero piezoelectric coefficients or locally piezoelectric electromechanical modes are achieved. Additionally, it still remains a challenge for manipulating the piezoelectric coefficients in a wide range. In this work, full nonzero piezoelectric coefficients are obtained by symmetry breaking in the architected piezoelectric metamaterial. The piezoelectric coefficients are designable over a wide range from positive to negative through manipulating the directions of each strut for the three-dimensional architected lattice. The architected metamaterials exhibit multiple positive/inverse piezoelectric modes, including normal and shear deformation. Finally, a smart gradient architected piezoelectric metamaterial is designed to take advantage of this feature, which can sense the position of the normal and shear force. This work paves the way for the manipulation of piezoelectric metamaterial in a wide range with designable full nonzero piezoelectric coefficients, thereby enabling application potential in the fields of smart sensing and actuation.

References

1.
Morini
,
L.
,
Eyzat
,
Y.
, and
Gei
,
M.
,
2019
, “
Negative Refraction in Quasicrystalline Multilayered Metamaterials
,”
J. Mech. Phys. Solids
,
124
, pp.
282
298
.
2.
Chen
,
X.
,
Liu
,
P.
,
Hou
,
Z.
, and
Pei
,
Y.
,
2017
, “
Implementation of Acoustic Demultiplexing With Membrane-Type Metasurface in Low Frequency Range
,”
Appl. Phys. Lett.
,
110
(
16
), p.
161909
.
3.
Farzaneh
,
A.
,
Pawar
,
N.
,
Portela
,
C. M.
, and
Hopkins
,
J. B.
,
2022
, “
Sequential Metamaterials With Alternating Poisson’s Ratios
,”
Nat. Commun.
,
13
(
1
), p.
1041
.
4.
Liu
,
J.
, and
Zhang
,
Y.
,
2018
, “
A Mechanics Model of Soft Network Materials With Periodic Lattices of Arbitrarily Shaped Filamentary Microstructures for Tunable Poisson’s Ratios
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
051003
.
5.
Shi
,
J.
,
Mofatteh
,
H.
,
Mirabolghasemi
,
A.
,
Desharnais
,
G.
, and
Akbarzadeh
,
A.
,
2021
, “
Programmable Multistable Perforated Shellular
,”
Adv. Mater.
,
33
(
42
), p.
2102423
.
6.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
.
7.
Overvelde
,
J. T.
,
de Jong
,
T. A.
,
Shevchenko
,
Y.
,
Becerra
,
S. A.
,
Whitesides
,
G. M.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2016
, “
A Three-Dimensional Actuated Origami-Inspired Transformable Metamaterial With Multiple Degrees of Freedom
,”
Nat. Commun.
,
7
(
1
), p.
10929
.
8.
Haghpanah
,
B.
,
Salari-Sharif
,
L.
,
Pourrajab
,
P.
,
Hopkins
,
J.
, and
Valdevit
,
L.
,
2016
, “
Multistable Shape-Reconfigurable Architected Materials
,”
Adv. Mater.
,
28
(
36
), pp.
7915
7920
.
9.
Shu
,
L.
,
Liang
,
R.
,
Yu
,
Y.
,
Tian
,
T.
,
Rao
,
Z.
, and
Wang
,
Y.
,
2019
, “
Unique Elastic, Dielectric and Piezoelectric Properties of Micro-Architected Metamaterials
,”
J. Mater. Chem. C
,
7
(
9
), pp.
2758
2765
.
10.
Yang
,
J.
,
Li
,
Z.
,
Xin
,
X.
,
Gao
,
X.
,
Yuan
,
X.
,
Wang
,
Z.
,
Yu
,
Z.
,
Wang
,
X.
,
Zhou
,
J.
, and
Dong
,
S.
,
2019
, “
Designing Electromechanical Metamaterial With Full Nonzero Piezoelectric Coefficients
,”
Sci. Adv.
,
5
(
11
), p.
eaax1782
.
11.
Yang
,
S.
,
Wang
,
M.
,
Wang
,
L.
,
Liu
,
J.
,
Wu
,
J.
,
Li
,
J.
,
Gao
,
X.
,
Chang
,
Y.
,
Xu
,
Z.
, and
Li
,
F.
,
2022
, “
Achieving Both High Electromechanical Properties and Temperature Stability in Textured PMN-PT Ceramics
,”
J. Am. Ceram. Soc.
,
105
(
5
), pp.
3322
3330
.
12.
Qiu
,
C.
,
Wang
,
B.
,
Zhang
,
N.
,
Zhang
,
S.
,
Liu
,
J.
,
Walker
,
D.
,
Wang
,
Y.
, et al
,
2020
, “
Transparent Ferroelectric Crystals With Ultrahigh Piezoelectricity
,”
Nature
,
577
(
7790
), pp.
350
354
.
13.
Han
,
M.
,
Wang
,
H.
,
Yang
,
Y.
,
Liang
,
C.
,
Bai
,
W.
,
Yan
,
Z.
,
Li
,
H.
, et al
,
2019
, “
Three-Dimensional Piezoelectric Polymer Microsystems for Vibrational Energy Harvesting, Robotic Interfaces and Biomedical Implants
,”
Nat. Electron.
,
2
(
1
), pp.
26
35
.
14.
Li
,
F.
,
Lin
,
D.
,
Chen
,
Z.
,
Cheng
,
Z.
,
Wang
,
J.
,
Li
,
C.
,
Xu
,
Z.
, et al
,
2018
, “
Ultrahigh Piezoelectricity in Ferroelectric Ceramics by Design
,”
Nat. Mater.
,
17
(
4
), pp.
349
354
.
15.
Shrout
,
T. R.
, and
Zhang
,
S. J.
,
2007
, “
Lead-Free Piezoelectric Ceramics: Alternatives for PZT?
,”
J. Electroceram.
,
19
(
1
), pp.
113
126
.
16.
Gao
,
X.
,
Wu
,
J.
,
Yu
,
Y.
,
Chu
,
Z.
,
Shi
,
H.
, and
Dong
,
S.
,
2018
, “
Giant Piezoelectric Coefficients in Relaxor Piezoelectric Ceramic PNN-PZT for Vibration Energy Harvesting
,”
Adv. Funct. Mater.
,
28
(
30
), p.
1706895
.
17.
Wang
,
K.
, and
Li
,
J.-F.
,
2010
, “
Domain Engineering of Lead-Free Li-Modified (K,Na)NbO3 Polycrystals With Highly Enhanced Piezoelectricity
,”
Adv. Funct. Mater.
,
20
(
12
), pp.
1924
1929
.
18.
Wu
,
J.
,
Chen
,
X.
,
Chu
,
Z.
,
Shi
,
W.
,
Yu
,
Y.
, and
Dong
,
S.
,
2016
, “
A Barbell-Shaped High-Temperature Piezoelectric Vibration Energy Harvester Based on BiScO3–PbTiO3 Ceramic
,”
Appl. Phys. Lett.
,
109
(
17
), p.
173901
.
19.
Sente
,
P. A.
,
Labrique
,
F. M.
, and
Alexandre
,
P. J.
,
2012
, “
Efficient Control of a Piezoelectric Linear Actuator Embedded Into a Servo-Valve for Aeronautic Applications
,”
IEEE Trans. Ind. Electron.
,
59
(
4
), pp.
1971
1979
.
20.
Deng
,
J.
,
Liu
,
Y.
,
Chen
,
W.
, and
Yu
,
H.
,
2019
, “
A XY Transporting and Nanopositioning Piezoelectric Robot Operated by Leg Rowing Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
207
217
.
21.
Chen
,
Z.
,
Li
,
X.
,
Ci
,
P.
,
Liu
,
G.
, and
Dong
,
S.
,
2015
, “
A Standing Wave Linear Ultrasonic Motor Operating in in-Plane Expanding and Bending Modes
,”
Rev. Sci. Instrum.
,
86
(
3
), p.
035002
.
22.
Berik
,
P.
,
Chang
,
W. Y.
, and
Jiang
,
X.
,
2017
, “
Piezoelectric d36 in-Plane Shear-Mode of Lead-Free BZT-BCT Single Crystals for Torsion Actuation
,”
Appl. Phys. Lett.
,
110
(
5
), p.
052902
.
23.
Huan
,
Q.
,
Miao
,
H.
, and
Li
,
F.
,
2017
, “
A Uniform-Sensitivity Omnidirectional Shear-Horizontal (SH) Wave Transducer Based on a Thickness Poled, Thickness-Shear (d15) Piezoelectric Ring
,”
Smart Mater. Struct.
,
26
(
8
), p.
08LT01
.
24.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
, et al
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.
25.
Chen
,
C.
,
Wang
,
X.
,
Wang
,
Y.
,
Yang
,
D.
,
Yao
,
F.
,
Zhang
,
W.
,
Wang
,
B.
,
Sewvandi
,
G. A.
,
Yang
,
D.
, and
Hu
,
D.
,
2020
, “
Additive Manufacturing of Piezoelectric Materials
,”
Adv. Funct. Mater.
,
30
(
52
), p.
183512
.
26.
Yao
,
D.
,
Cui
,
H.
,
Hensleigh
,
R.
,
Smith
,
P.
,
Alford
,
S.
,
Bernero
,
D.
,
Bush
,
S.
, et al
,
2019
, “
Achieving the Upper Bound of Piezoelectric Response in Tunable, Wearable 3D Printed Nanocomposites
,”
Adv. Funct. Mater.
,
29
(
42
), p.
1903866
.
27.
Li
,
S.
,
Jiang
,
W.
,
Zheng
,
L.
, and
Cao
,
W.
,
2013
, “
A Face-Shear Mode Single Crystal Ultrasonic Motor
,”
Appl. Phys. Lett.
,
102
(
18
), p.
183512
.
28.
Ci
,
P.
,
Liu
,
G.
,
Chen
,
Z.
,
Zhang
,
S.
, and
Dong
,
S.
,
2014
, “
High-Order Face-Shear Modes of Relaxor-PbTiO3 Crystals for Piezoelectric Motor Applications
,”
Appl. Phys. Lett.
,
104
(
24
), p.
242911
.
29.
Zhou
,
W.
,
Li
,
H.
, and
Yuan
,
F.-G.
,
2014
, “
Guided Wave Generation, Sensing and Damage Detection Using In-Plane Shear Piezoelectric Wafers
,”
Smart Mater. Struct.
,
23
(
1
), p.
015014
.
30.
Zhang
,
S.
,
Li
,
F.
,
Jiang
,
X.
,
Kim
,
J.
,
Luo
,
J.
, and
Geng
,
X.
,
2015
, “
Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers—A Review
,”
Prog. Mater. Sci.
,
68
, pp.
1
66
.
31.
Miao
,
H.
, and
Li
,
F.
,
2015
, “
Realization of Face-Shear Piezoelectric Coefficient d36 in PZT Ceramics Via Ferroelastic Domain Engineering
,”
Appl. Phys. Lett.
,
107
(
12
), p.
122902
.
32.
Wu
,
J.
,
Hu
,
Z.
,
Gao
,
X.
,
Chu
,
Z.
,
Dong
,
G.
,
Wang
,
Z.
,
Peng
,
B.
, et al
,
2020
, “
Quantitative Domain Engineering for Realizing d36 Piezoelectric Coefficient in Tetragonal Ceramics
,”
Acta Mater.
,
188
, pp.
416
423
.
33.
Miao
,
H.
, and
Li
,
F.
,
2021
, “
Shear Horizontal Wave Transducers for Structural Health Monitoring and Nondestructive Testing: A Review
,”
Ultrasonics
,
114
, p.
106355
.
34.
Cui
,
H.
,
Yao
,
D.
,
Hensleigh
,
R.
,
Lu
,
H.
,
Calderon
,
A.
,
Xu
,
Z.
,
Davaria
,
S.
,
Wang
,
Z.
,
Mercier
,
P.
, and
Tarazaga
,
P.
,
2022
, “
Design and Printing of Proprioceptive Three-Dimensional Architected Robotic Metamaterials
,”
Science
,
6599
, p.
376
.
35.
Newnham
,
R. E.
,
Bowen
,
L. J.
,
Klicker
,
K. A.
, and
Cross
,
L. E.
,
1980
, “
Composite Piezoelectric Transducers
,”
Mater. Des.
,
2
(
2
), pp.
93
106
.
36.
Newnham
,
R. E.
,
Skinner
,
D. P.
, and
Cross
,
L. E.
,
1978
, “
Connectivity and Piezoelectric-Pyroelectric Composites
,”
Mater. Res. Bull.
,
13
(
5
), pp.
525
536
.
37.
Bowen
,
C. R.
, and
Kara
,
H.
,
2002
, “
Pore Anisotropy in 3–3 Piezoelectric Composites
,”
Mater. Chem. Phys.
,
75
(
1–3
), pp.
45
49
.
38.
Dunn
,
M. L.
, and
Taya
,
M.
,
1993
, “
Micromechanics Predictions of the Effective Electroelastic Moduli of Piezoelectric Composites
,”
Int. J. Solids Struct.
,
30
(
2
), pp.
161
175
.
39.
Benveniste
,
Y.
,
1993
, “
Universal Relations in Piezoelectric Composites With Eigenstress and Polarization Fields, Part I: Binary Media—Local Fields and Effective Behavior
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
265
269
.
40.
Berger
,
H.
,
Kari
,
S.
,
Gabbert
,
U.
,
Rodriguez-Ramos
,
R.
,
Guinovart
,
R.
,
Otero
,
J. A.
, and
Bravo-Castillero
,
J.
,
2005
, “
An Analytical and Numerical Approach for Calculating Effective Material Coefficients of Piezoelectric Fiber Composites
,”
Int. J. Solids Struct.
,
42
(
21–22
), pp.
5692
5714
.
41.
Berger
,
H.
,
Gabbert
,
U.
,
Köppe
,
H.
,
Rodriguez-Ramos
,
R.
,
Bravo-Castillero
,
J.
,
Guinovart-Diaz
,
R.
,
Otero
,
J. A.
, and
Maugin
,
G. A.
,
2003
, “
Finite Element and Asymptotic Homogenization Methods Applied to Smart Composite Materials
,”
Comput. Mech.
,
33
(
1
), pp.
61
67
.
42.
Fantoni
,
F.
,
Bacigalupo
,
A.
, and
Paggi
,
M.
,
2017
, “
Multi-Field Asymptotic Homogenization of Thermo-Piezoelectric Materials With Periodic Microstructure
,”
Int. J. Solids Struct.
,
120
, pp.
31
56
.
43.
Berger
,
H.
,
Kari
,
S.
,
Gabbert
,
U.
,
Rodriguez-Ramos
,
R.
,
Bravo-Castillero
,
J.
,
Guinovart-Diaz
,
R.
,
Sabina
,
F. J.
, and
Maugin
,
G. A.
,
2006
, “
Unit Cell Models of Piezoelectric Fiber Composites for Numerical and Analytical Calculation of Effective Properties
,”
Smart Mater. Struct.
,
15
(
2
), pp.
451
458
.
44.
Challagulla
,
K. S.
, and
Venkatesh
,
T. A.
,
2012
, “
Electromechanical Response of Piezoelectric Foams
,”
Acta Mater.
,
60
(
5
), pp.
2111
2127
.
45.
Iyer
,
S.
,
Alkhader
,
M.
, and
Venkatesh
,
T. A.
,
2015
, “
Electromechanical Behavior of Auxetic Piezoelectric Cellular Solids
,”
Scr. Mater.
,
99
, pp.
65
68
.
46.
Iyer
,
S.
,
Alkhader
,
M.
, and
Venkatesh
,
T. A.
,
2016
, “
On the Relationships Between Cellular Structure, Deformation Modes and Electromechanical Properties of Piezoelectric Cellular Solids
,”
Int. J. Solids Struct.
,
80
, pp.
73
83
.
47.
Khan
,
K. A.
, and
Khan
,
M. A.
,
2019
, “
3-3 Piezoelectric Metamaterial With Negative and Zero Poisson’s Ratio for Hydrophones Applications
,”
Mater. Res. Bull.
,
112
, pp.
194
204
.
48.
Khan
,
K. A.
,
Al-Mansoor
,
S.
, and
Khan
,
S. Z.
,
2019
, “
Piezoelectric Metamaterial With Negative and Zero Poisson’s Ratios
,”
J. Eng. Mech.
,
13
, p.
04019101
.
49.
Wang
,
P.-H.
,
Liu
,
H.-T.
, and
Wang
,
Y.-B.
,
2022
, “
Electromechanical Behavior of 3-3 Piezoelectric Star-Shaped Metamaterial With Four Types of Connection
,”
Mech. Syst. Signal Process.
,
170
, p.
108825
.
50.
Wang
,
P.-H.
,
Liu
,
H.-T.
, and
Wang
,
Y.-B.
,
2022
, “
Electromechanical Behavior of Piezoelectric Metamaterial With Negative Poisson’s Ratios for Three Kinds of Connection
,”
Mater. Lett.
,
308
, p.
131195
.
51.
Shi
,
J.
, and
Akbarzadeh
,
A. H.
,
2019
, “
Architected Cellular Piezoelectric Metamaterials: Thermo-Electro-Mechanical Properties
,”
Acta Mater.
,
163
, pp.
91
121
.
52.
Shi
,
J.
, and
Akbarzadeh
,
A. H.
,
2020
, “
3D Hierarchical Lattice Ferroelectric Metamaterials
,”
Int. J. Eng. Sci.
,
149
, p.
103247
.
53.
Shi
,
J.
, and
Akbarzadeh
,
A. H.
,
2020
, “
Hierarchical Cellular Ferroelectric Metamaterials: A Design Motif to Enhance Multifunctional Figures of Merit
,”
Compos. Struct.
,
250
, p.
112395
.
54.
Cui
,
H.
,
Hensleigh
,
R.
,
Yao
,
D.
,
Maurya
,
D.
,
Kumar
,
P.
,
Kang
,
M. G.
,
Priya
,
S.
, and
Zheng
,
X. R.
,
2019
, “
Three-Dimensional Printing of Piezoelectric Materials With Designed Anisotropy and Directional Response
,”
Nat. Mater.
,
18
(
3
), pp.
234
241
.
55.
Manna
,
S.
,
Brennecka
,
G. L.
,
Stevanović
,
V.
, and
Ciobanu
,
C. V.
,
2017
, “
Tuning the Piezoelectric and Mechanical Properties of the AlN System Via Alloying With YN and BN
,”
J. Appl. Phys.
,
122
, p.
10
.
56.
Laurenti
,
M.
,
Canavese
,
G.
,
Sacco
,
A.
,
Fontana
,
M.
,
Bejtka
,
K.
,
Castellino
,
M.
,
Pirri
,
C. F.
, and
Cauda
,
V.
,
2015
, “
Nanobranched ZnO Structure: p-Type Doping Induces Piezoelectric Voltage Generation and Ferroelectric-Photovoltaic Effect
,”
Adv. Mater.
,
27
(
28
), pp.
4218
4223
.
57.
McCall
,
W. R.
,
Kim
,
K.
,
Heath
,
C.
,
La Pierre
,
G.
, and
Sirbuly
,
D. J.
,
2014
, “
Piezoelectric Nanoparticle-Polymer Composite Foams
,”
ACS Appl. Mater. Interfaces
,
6
(
22
), pp.
19504
19509
.
58.
Liu
,
K.
,
Zhou
,
C.
,
Hu
,
J.
,
Zhang
,
S.
,
Zhang
,
Q.
,
Sun
,
C.
,
Shi
,
Y.
, et al
,
2021
, “
Fabrication of Barium Titanate Ceramics Via Digital Light Processing 3D Printing by Using High Refractive Index Monomer
,”
J. Eur. Ceram. Soc.
,
41
(
12
), pp.
5909
5917
.
You do not currently have access to this content.