Abstract

Canonical equations play a pivotal role in various sub-fields of physics and mathematics. However, for complex systems and systems without first principles, deriving canonical equations analytically is quite laborious or might even be impossible. This work is devoted to automatedly distilling the canonical equations solely from random state data. The random state data are collected from stochastically excited, dissipative dynamical systems either experimentally or numerically, while other information, such as the system characterization itself and the excitations, is not needed. The identification procedure comes down to a nested optimization problem, and the explicit expressions of the momentum (density) functions and energy (density) functions are identified simultaneously. Three representative examples are investigated to illustrate its high accuracy of identification, the small requirement for data amount, and high robustness to excitations and dissipation. The identification procedure serves as a filter, filtering out nonconservative information while retaining conservative information, which is especially suitable for systems with unobtainable excitations.

References

1.
Noether
,
E.
,
1971
, “
Invariant Variation Problems
,”
Transp. Theory Statist. Phys.
,
1
(
3
), pp.
186
207
.
2.
Sardanashvily
,
G.
,
2016
,
Noether’s Theorems: Applications in Mechanics and Field Theory
,
Atlantis Press
,
Paris
.
3.
Kosmann-Schwarzbach
,
Y.
,
2010
,
The Noether Theorems. Invariance and Conservation Laws in the Twentieth Century
,
Springer
,
NY
.
4.
Rowe
,
D. E.
,
2021
,
Emmy Noether-Mathematician Extraordinaire
,
Springer
,
Berlin
.
5.
Rowe
,
D. E.
, and
Koreuber
,
M.
,
2020
,
Proving It Her Way: Emmy Noether, a Life in Mathematics
,
Springer
,
Cham
.
6.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1976
,
Mechanics
,
Elsevier Butterworth-Heinemann
,
Oxford
.
7.
Lanczos
,
C.
,
1986
,
The Variational Principles of Mechanics
,
Dover Publications
,
NY
.
8.
Feng
,
K.
,
1986
, “
Difference Schemes for Hamiltonian Formalism and Symplectic Geometry
,”
J. Comput. Math.
,
4
(
3
), pp.
279
289
.
9.
Feng
,
K.
, and
Qin
,
M.
,
2010
,
Symplectic Geometric Algorithms for Hamiltonian Systems
,
Springer
,
Heidelberg
.
10.
Donnelly
,
D.
, and
Rogers
,
E.
,
2005
, “
Symplectic Integrators: An Introduction
,”
Am. J Phys.
,
73
(
10
), pp.
938
945
.
11.
Lin
,
Y. K.
, and
Cai
,
G. Q.
,
2004
,
Probabilistic Structural Dynamics: Advanced Theory and Applications
,
McGraw-Hill
,
NY
.
12.
Li
,
J.
, and
Chen
,
J.
,
2009
,
Stochastic Dynamics of Structures
,
John Wiley & Sons
,
Singapore
.
13.
Zhu
,
W. Q.
,
1996
, “
Stochastic Averaging of Quasi-Hamiltonian Systems
,”
Sci. China Ser. A-Math.
,
39
(
1
), pp.
97
107
.
14.
Zhu
,
W. Q.
,
2006
, “
Nonlinear Stochastic Dynamics and Control in Hamiltonian Formulation
,”
ASME Appl. Mech. Rev.
,
59
(
4
), pp.
230
248
.
15.
Ghadami
,
A.
, and
Epureanu
,
B. I.
,
2022
, “
Data-Driven Prediction in Dynamical Systems
,”
Philos. Trans. R. Soc. A- Math. Phys. Eng. Sci.
,
380
(
2229
), p.
20210213
.
16.
North
,
J. S.
,
Wikle
,
C. K.
, and
Schliep
,
E. M.
,
2022
, “
A Review of Data-Driven Discovery for Dynamic Systems
,” arXiv preprint arXiv:2210.10663.
17.
Ha
,
S.
, and
Jeong
,
H.
,
2021
, “
Discovering Invariants via Machine Learning
,”
Phys. Rev. Res.
,
3
(
4
), p.
L042035
.
18.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
PNAS
,
113
(
15
), pp.
3932
3937
.
19.
Boninsegna
,
L.
,
Nüske
,
F.
, and
Clementi
,
C.
,
2018
, “
Sparse Learning of Stochastic Dynamical Equations
,”
J. Chem. Phys.
,
148
(
24
), p.
241723
.
20.
Dale
,
R.
, and
Bhat
,
H. S.
,
2018
, “
Equations of Mind: Data Science for Inferring Nonlinear Dynamics of Socio-Cognitive Systems
,”
Cogn. Syst. Res.
,
52
, pp.
275
290
.
21.
Reinbold
,
P. A. K.
,
Gurevich
,
D. R.
, and
Grigoriev
,
R. O.
,
2020
, “
Using Noisy or Incomplete Data to Discover Models of Spatiotemporal Dynamics
,”
Phys. Rev. E
,
101
(
1
), p.
010203
.
22.
Schaeffer
,
H.
, and
McCalla
,
S. G.
,
2017
, “
Sparse Model Selection via Integral Terms
,”
Phys. Rev. E
,
96
(
2
), p.
023302
.
23.
Huang
,
Z. L.
,
Tian
,
Y. P.
,
Li
,
C. J.
,
Lin
,
G.
,
Wu
,
L. L.
,
Wang
,
Y.
, and
Jiang
,
H. Q.
,
2020
, “
Data-Driven Automated Discovery of Variational Laws Hidden in Physical Systems
,”
J. Mech. Phys. Solids
,
137
, p.
103871
.
24.
Li
,
C. J.
,
Huang
,
Z. L.
,
Wang
,
Y.
, and
Jiang
,
H. Q.
,
2021
, “
Rapid Identification of Switched Systems: A Data-Driven Method in Variational Framework
,”
Sci. China-Technol. Sci.
,
64
(
1
), pp.
148
156
.
25.
Bongard
,
J.
, and
Lipson
,
H.
,
2007
, “
Automated Reverse Engineering of Nonlinear Dynamical Systems
,”
PNAS
,
104
(
24
), pp.
9943
9948
.
26.
Schmidt
,
M.
, and
Lipson
,
H.
,
2009
, “
Distilling Free-Form Natural Laws From Experimental Data
,”
Science
,
324
(
5923
), pp.
81
85
.
27.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
28.
Qin
,
T.
,
Wu
,
K.
, and
Xiu
,
D.
,
2019
, “
Data Driven Governing Equations Approximation Using Deep Neural Networks
,”
J. Comput. Phys.
,
395
, pp.
620
635
.
29.
Chen
,
R. T. Q.
,
Rubanova
,
Y.
,
Bettencourt
,
J.
, and
Duvenaud
,
D.
,
2018
, “
Neural Ordinary Differential Equations
,”
Proceedings of the 32nd International Conference on Neural Information Processing Systems
,
Montreal, Canada
,
Dec. 2–8
, pp.
6572
6583
.
30.
Greydanus
,
S.
,
Dzamba
,
M.
, and
Yosinski
,
J.
,
2019
, “
Hamiltonian Neural Networks
,” arXiv:1906.01563. https://arxiv.org/abs/1906.01563
31.
Cranmer
,
M.
,
Greydanus
,
S.
,
Hoyer
,
S.
,
Battaglia
,
P.
,
Spergel
,
D.
, and
Ho
,
S.
,
2020
, “
Lagrangian Neural Networks
,” arXiv: 2003.04630.
32.
Choudhary
,
A.
,
Lindner
,
J. F.
,
Holliday
,
E. G.
,
Miller
,
S. T.
,
Sinha
,
S.
, and
Ditto
,
W. L.
,
2021
, “
Forecasting Hamiltonian Dynamics Without Canonical Coordinates
,”
Nonlinear Dyn.
,
103
(
2
), pp.
1553
1562
.
33.
Liu
,
Z. M.
,
Wang
,
B. H.
,
Meng
,
Q.
,
Chen
,
W.
,
Tegmark
,
M.
, and
Liu
,
T. Y.
,
2021
, “
Machine-Learning Nonconservative Dynamics for New-Physics Detection
,”
Phys. Rev. E
,
104
(
5
), p.
055302
.
34.
Desai
,
S. A.
,
Mattheakis
,
M.
,
Sondak
,
D.
,
Protopapas
,
P.
, and
Roberts
,
S. J.
,
2021
, “
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems
,”
Phys. Rev. E
,
104
(
3
), p.
034312
.
35.
Huang
,
Z. C.
,
Huang
,
S. H.
,
Li
,
J. Y.
,
Wang
,
Y.
, and
Jiang
,
H. Q.
,
2023
, “
Extracting Conservative Equations From Nonconservative State Data
,”
J. Mech. Phys. Solids
,
170
, p.
105127
.
You do not currently have access to this content.