Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Driven by the versatility and adaptability of next-generation soft robotic devices, investigating the vibrational behavior under fluid-electromechanical coupling represented by a soft dielectric elastomer actuator (DEA) tube filled with fluid evokes much attention. Here, we investigate the axisymmetric vibration of an inviscid compressible fluid-filled thin DEA tube by using the Gent model to define the behavior of the tube under multi-fields. We consider the effect of the fluid by exploiting the relation of the radial fluid pressure at the fluid–solid interface. Following the general incremental theory of nonlinear electro-elasticity, we formulate the incremental governing and constitutive equations needed for vibration analysis and solve them numerically using the state-space method (SSM). The results demonstrate the influence of the applied voltage, overcritical circumferential stretch, higher frequency modes, and phase velocity modes on the early development of axisymmetric instability and dielectric breakdown. The existence of the fluid contributes to more reduction in the frequency and phase velocity compared to the fluid-free case due to the added mass effect. Moreover, the results show the role of fluid in the partial self-healing of the soft DEA. A parametric study on specific variables deduces that increasing the thickness of the soft DEA tube reduces the frequency effectively, whereas applying higher voltages causes a thinning in the thickness, leading to the need for thicker tubes.

References

1.
Bathe
,
M.
, and
Kamm
,
R. D.
,
1999
, “
A Fluid–Structure Interaction Finite Element Analysis of Pulsatile Blood Flow Through a Compliant Stenotic Artery
,”
ASME J. Biomech. Eng.
,
121
(
4
), pp.
361
369
.
2.
Carpi
,
F.
,
2016
,
Electromechanically Active Polymers
,
Springer
,
Cham, Switzerland
.
3.
Shankar
,
R.
,
Ghosh
,
T. K.
, and
Spontak
,
R. J.
,
2007
, “
Dielectric Elastomers as Next-Generation Polymeric Actuators
,”
Soft Matter
,
3
(
9
), pp.
1116
1129
.
4.
Brochu
,
P.
, and
Pei
,
Q. B.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.
5.
Anderson
,
I. A.
,
Gisby
,
T. A.
,
McKay
,
T. G.
,
O’Brien
,
B. M.
, and
Calius
,
E. P.
,
2012
, “
Multi-Functional Dielectric Elastomer Artificial Muscles for Soft and Smart Machines
,”
J. Appl. Phys.
,
112
(
4
), p.
041101
.
6.
Huang
,
X.
,
Baroudi
,
A. E.
, and
Wu
,
B.
,
2023
, “
Vibration Properties of an Elastic Gold Nanosphere Submerged in Viscoelastic Fluid
,”
Mod. Phys. Lett. B
,
37
(
33
), p.
2350174
.
7.
Wang
,
X.
,
Mitchell
,
S. K.
,
Rumley
,
E. H.
,
Rothemund
,
P.
, and
Keplinger
,
C.
,
2020
, “
High-Strain Peano-HASEL Actuators
,”
Adv. Funct. Mater.
,
30
(
7
), p.
1908821
.
8.
Kellaris
,
N.
,
Venkata
,
V. G.
,
Smith
,
G. M.
,
Mitchell
,
S. K.
, and
Keplinger
,
C.
,
2018
, “
Peano-HASEL Actuators: Muscle-Mimetic, Electrohydraulic Transducers That Linearly Contract on Activation
,”
Sci. Rob.
,
3
(
14
), p.
eaar3276
.
9.
Polygerinos
,
P.
,
Correll
,
N.
,
Morin
,
S. A.
,
Mosadegh
,
B.
,
Onal
,
C. D.
,
Petersen
,
K.
,
Cianchetti
,
M.
,
Tolley
,
M. T.
, and
Shepherd
,
R. F.
,
2017
, “
Soft Robotics: Review of Fluid-Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human-Robot Interaction
,”
Adv. Eng. Mater.
,
19
(
12
), p.
1700016
.
10.
Acome
,
E.
,
Mitchell
,
S. K.
,
Morrissey
,
T. G.
,
Emmett
,
M. B.
,
Benjamin
,
C.
,
King
,
M.
,
Radakovitz
,
M.
, and
Keplinger
,
C.
,
2018
, “
Hydraulically Amplified Self-Healing Electrostatic Actuators With Muscle-Like Performance
,”
Science
,
359
(
6371
), pp.
61
65
.
11.
Rothemund
,
P.
,
Kirkman
,
S.
, and
Keplinger
,
C.
,
2020
, “
Dynamics of Electrohydraulic Soft Actuators
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
28
), pp.
16207
16213
.
12.
Rothemund
,
P.
,
Kellaris
,
N.
,
Mitchell
,
S. K.
,
Acome
,
E.
, and
Keplinger
,
C.
,
2021
, “
HASEL Artificial Muscles for a New Generation of Lifelike Robots—Recent Progress and Future Opportunities
,”
Adv. Mater.
,
33
(
19
), p.
2003375
.
13.
Yoder
,
Z.
,
Kellaris
,
N.
,
Chase-Markopoulou
,
C.
,
Ricken
,
D.
,
Mitchell
,
S. K.
,
Emmett
,
M. B.
,
Weir
,
R. F. F.
,
Segil
,
J.
, and
Keplinger
,
C.
,
2020
, “
Design of a High-Speed Prosthetic Finger Driven by Peano-HASEL Actuators
,”
Front. Robot. AI
,
7
, pp.
2296
9144
.
14.
Yoder
,
Z.
,
Macari
,
D.
,
Kleinwaks
,
G.
,
Schmidt
,
I.
,
Acome
,
E.
, and
Keplinger
,
C.
,
2023
, “
A Soft, Fast and Versatile Electrohydraulic Gripper With Capacitive Object Size Detection
,”
Adv. Funct. Mater.
,
33
(
3
), p.
2209080
.
15.
Kellaris
,
N.
,
Rothemund
,
P.
,
Zeng
,
Y.
,
Mitchell
,
S. K.
,
Smith
,
G. M.
,
Jayaram
,
K.
, and
Keplinger
,
C.
,
2021
, “
Spider-Inspired Electrohydraulic Actuators for Fast, Soft-Actuated Joints
,”
Adv. Sci.
,
8
(
14
), p.
2100916
.
16.
Hunt
,
S.
,
McKay
,
T. G.
, and
Anderson
,
I. A.
,
2014
, “
A Self-Healing Dielectric Elastomer Actuator
,”
Appl. Phys. Lett.
,
104
(
11
), p.
113701
.
17.
Pelrine
,
R. E.
,
Kornbluh
,
R. D.
, and
Joseph
,
J. P.
,
1998
, “
Electrostriction of Polymer Dielectrics With Compliant Electrodes as a Means of Actuation
,”
Sens. Actuators, A
,
64
(
1
), pp.
77
85
.
18.
Baumhauer
,
J. C.
, and
Tiersten
,
H. F.
,
1973
, “
Nonlinear Electroelastic Equations for Small Fields Superposed on a Bias
,”
J. Acoust. Soc. Am.
,
54
(
4
), pp.
1017
1034
.
19.
Toupin
,
R. A.
,
1956
, “
The Elastic Dielectric
,”
Arch. Ration. Mech. Anal.
,
5
(
6
), pp.
849
915
.
20.
Toupin
,
R. A.
,
1963
, “
A Dynamical Theory of Elastic Dielectrics
,”
Int. J. Eng. Sci.
,
1
(
1
), pp.
101
126
.
21.
Dorfmann
,
A.
, and
Ogden
,
R.
,
2005
, “
Nonlinear Electroelasticity
,”
Acta Mech.
,
174
(
3–4
), p.
167
.
22.
McMeeking
,
R. M.
, and
Landis
,
C. M.
,
2005
, “
Electrostatic Forces and Stored Energy for Deformable Dielectric Materials
,”
ASME J. Appl. Mech.
,
72
(
4
), pp.
581
590
.
23.
Suo
,
Z. G.
,
Zhao
,
X. H.
, and
Greene
,
W. H.
,
2008
, “
A Nonlinear Field Theory of Deformable Dielectrics
,”
J. Mech. Phys. Solids
,
56
(
2
), pp.
467
486
.
24.
Shmuel
,
G.
, and
deBotton
,
G.
,
2013
, “
Axisymmetric Wave Propagation in Finitely Deformed Dielectric Elastomer Tubes
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
469
(
2155
), p.
20130071
.
25.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2020
, “
Waves and Vibrations in a Finitely Deformed Electroelastic Circular Cylindrical Tube
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
476
(
2233
), p.
20190701
.
26.
Zhu
,
J.
,
Stoyanov
,
H.
,
Kofod
,
G.
, and
Suo
,
Z. G.
,
2010
, “
Large Deformation and Electromechanical Instability of a Dielectric Elastomer Tube Actuator
,”
J. Appl. Phys.
,
108
, p.
074113
.
27.
Melnikov
,
A.
, and
Ogden
,
R. W.
,
2018
, “
Bifurcation of Finitely Deformed Thick-Walled Electroelastic Cylindrical Tubes Subject to a Radial Electric Field
,”
Z. Angew. Math. Phys.
,
69
, p.
60
.
28.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2019
, “
Instabilities of Soft Dielectrics
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
377
(
2144
), p.
20180077
.
29.
Biot
,
M. A.
,
1952
, “
Propagation of Elastic Waves in a Cylindrical Bore Containing a Fluid
,”
J. Appl. Phys.
,
23
(
9
), pp.
997
1005
.
30.
Fuller
,
C. R.
, and
Fahy
,
F. J.
,
1982
, “
Characteristics of Wave Propagation and Energy Distributions in Cylindrical Elastic Shells Filled With Fluid
,”
J. Sound Vib.
,
81
(
4
), pp.
501
518
.
31.
Chen
,
W. Q.
, and
Bian
,
Z. G.
,
2011
, “
Wave Propagation in Submerged Functionally Graded Piezoelectric Cylindrical Transducers With Axial Polarization
,”
Mech. Adv. Mater. Struct.
,
18
(
1
), pp.
85
93
.
32.
Chen
,
W. Q.
,
Bian
,
Z. G.
,
Lv
,
C. F.
, and
Ding
,
H. J.
,
2004
, “
3D Free Vibration Analysis of a Functionally Graded Piezoelectric Hollow Cylinder Filled With Compressible Fluid
,”
Int. J. Solids Struct.
,
41
(
3
), pp.
947
964
.
33.
Defaz
,
R. I.
,
Epstein
,
M.
, and
Federico
,
S.
,
2021
, “
Analysis of Solitary Waves in Fluid-Filled Thin-Walled Electroactive Tubes
,”
Mech. Res. Commun.
,
113
, p.
103654
.
34.
Cao
,
Y.
,
Wu
,
B.
,
Carrera
,
E.
,
Rudykh
,
S.
, and
Chen
,
W. Q.
,
2024
, “
Axisymmetric Vibration of Multilayered Electroactive Circular Plates in Contact With Fluid
,”
J. Sound Vib.
,
573
, p.
118189
.
35.
Zhao
,
X.
, and
Suo
,
Z.
,
2007
, “
Method to Analyze Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
91
(
6
), p.
061921
.
36.
Su
,
Y. P.
,
Conroy Broderick
,
H.
,
Chen
,
W. Q.
, and
Destrade
,
M.
,
2018
, “
Wrinkles in Soft Dielectric Plates
,”
J. Mech. Phys. Solids
,
119
, pp.
298
318
.
37.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2014
,
Nonlinear Theory of Electroelastic and Magnetoelastic Interactions
,
Springer
,
New York
.
38.
Wu
,
B.
,
Su
,
Y. P.
,
Chen
,
W. Q.
, and
Zhang
,
C.
,
2017
, “
On Guided Circumferential Waves in Soft Electroactive Tubes Under Radially Inhomogeneous Biasing Fields
,”
J. Mech. Phys. Solids
,
99
, pp.
116
145
.
39.
Weiqiu
,
C.
,
Ding
,
H. J.
,
Guo
,
Y. M.
, and
Yang
,
Q. D.
,
1997
, “
Free Vibrations of Fluid-Filled Orthotropic Cylindrical Shells
,”
J. Eng. Mech.
,
123
(
11
), pp.
1130
1133
.
40.
Chen
,
W. Q.
,
Liu
,
D. Y.
,
Kitipornchai
,
S.
, and
Yang
,
J.
,
2017
, “
Bifurcation of Pressurized Functionally Graded Elastomeric Hollow Cylinders
,”
Composites, Part B
,
109
, pp.
259
276
.
41.
Su
,
Y. P.
,
2020
, “
Voltage-Controlled Instability Transitions and Competitions in a Finitely Deformed Dielectric Elastomer Tube
,”
Int. J. Eng. Sci.
,
157
, p.
103380
.
42.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
43.
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2001
,
Three Dimensional Problems of Piezoelasticity
,
Nova Science
,
Huntington, New York
.
44.
Pestel
,
E. C.
, and
Leckie
,
F. A.
,
1963
,
Matrix Methods in Elastomechanics
,
McGraw-Hill
,
New York
.
45.
Wu
,
B.
,
Destrade
,
M.
, and
Chen
,
W. Q.
,
2020
, “
Nonlinear Response and Axisymmetric Wave Propagation in Functionally Graded Soft Electro-Active Tubes
,”
Int. J. Mech. Sci.
,
187
, p.
106006
.
You do not currently have access to this content.