Abstract

The plane strain problem of an isotropic elastic matrix subjected to uniform far-field load and containing multiple stiff prestressed arcs located on the same circle is considered. The boundary conditions for the arcs are described by those of either Gurtin–Murdoch or Steigmann–Ogden theories in which the arcs are endowed with their own elastic energies. The material parameters for each arc can in general be different. The problem is reduced to the system of real variables hypersingular boundary integral equations in terms of two scalar unknowns expressed via the components of the stress tensors of the arcs. The unknowns are approximated by the series of trigonometric functions that are multiplied by the square root weight functions to allow for automatic incorporation of the tip conditions. The coefficients in series are found from the system of linear algebraic equations that are solved using the collocation method. The expressions for the stress intensity factors are derived and numerical examples are presented to illustrate the influence of governing dimensionless parameters.

References

1.
Benveniste
,
Y.
, and
Miloh
,
T.
,
2001
, “
Imperfect Soft and Stiff Interfaces in Two-Dimensional Elasticity
,”
Mech. Mater.
,
33
(
6
), pp.
309
323
.
2.
Mogilevskaya
,
S. G.
,
Zemlyanova
,
A. Y.
, and
Kushch
,
V. I.
,
2021
, “
Fiber- and Particle-Reinforced Composite Materials With the Gurtin–Murdoch and Steigmann–Ogden Surface Energy Endowed Interfaces
,”
ASME Appl. Mech. Rev.
,
73
(
5
), p.
050801
.
3.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.
4.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
.
5.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1999
, “
Elastic Surface-Substrate Interactions
,”
Proc. R. Soc. Lond. Ser. A: Math., Phys. Eng. Sci.
,
455
(
1982
), pp.
437
474
.
6.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1997
, “
Plain Deformations of Elastic Solids With Intrinsic Boundary Elasticity
,”
Proc. R. Soc. Lond. A
,
453
(
1959
), pp.
853
877
.
7.
Baranova
,
S.
,
Mogilevskaya
,
S. G.
,
Mantic
,
V.
, and
Jiménez-Alfaro
,
S.
,
2020
, “
Analysis of the Antiplane Problem With an Embedded Zero Thickness Layer Described by the Gurtin-Murdoch Model
,”
J. Elast.
,
140
(
2
), pp.
171
195
.
8.
Mogilevskaya
,
S. G.
,
Zemlyanova
,
A. Y.
, and
Mantič
,
V.
,
2021
, “
The Use of the Gurtin-Murdoch Theory for Modeling Mechanical Processes in Composites With Two-Dimensional Reinforcements
,”
Compos. Sci. Technol.
,
210
, p.
108751
.
9.
Zemlyanova
,
A. Y.
,
2023
, “
A Problem for a Material Surface Attached to the Boundary of an Elastic Semi-Plane
,”
Math. Mech. Solids
,
29
(
2248
), p.
10812865231184415
.
10.
Zemlyanova
,
A. Y.
,
Mogilevskaya
,
S. G.
, and
Schillinger
,
D.
,
2023
, “
Numerical Solution of the Two-Dimensional Steigmann–Ogden Model of Material Surface With a Boundary
,”
Physica D
,
443
, p.
133531
.
11.
Han
,
Z.
,
Mogilevskaya
,
S. G.
, and
Zemlyanova
,
A. Y.
,
2023
, “
On the Problem of a Gurtin-Murdoch Cylindrical Material Surface Embedded in an Infinite Matrix
,”
Int. J. Solids Struct.
,
288
(
1
), p.
112617
.
12.
Han
,
Z.
,
Zemlyanova
,
A. Y.
, and
Mogilevskaya
,
S. G.
,
2024
, “
Two-Dimensional Problem of an Infinite Matrix Reinforced With a Steigmann–Ogden Cylindrical Surface of Circular Arc Cross-Section
,”
Int. J. Eng. Sci.
,
194
, p.
103986
.
13.
Patil
,
R. S.
, and
Mogilevskaya
,
S. G.
,
2024
, “
Plane Strain Problem of an Elastic Matrix Containing Multiple Gurtin–Murdoch Material Surfaces Along Straight Segments
,”
Eng. Anal. Bound. Elem.
,
163
, pp.
354
368
.
14.
Liu
,
Y. W.
, and
Jiang
,
C. P.
,
1994
, “
Stress Distribution at the Rigid Circular Arc Inclusion End
,”
Eng. Fract. Mech.
,
47
(
3
), pp.
431
440
.
15.
Shen
,
M. H.
, and
Chao
,
C. K.
,
1994
, “
Explicit Solutions for the Elastic and Thermoelastic Fields With a Rigid Circular-Arc Inclusion
,”
Int. J. Fract.
,
65
(
1
), pp.
1
18
.
16.
Chao
,
C. K.
, and
Wu
,
S. P.
,
1995
, “
Explicit Solutions for the Antiplane Problem of Bonded Dissimilar Materials With Two Concentric Circular-Arc Inclusions
,”
ASME J. Energy Resour. Technol.
,
117
(
1
), pp.
1
6
.
17.
Liu
,
Y.-W.
, and
Fang
,
Q.-H.
,
2005
, “
Plane Elastic Problem on Rigid Lines Along Circular Inclusion
,”
Appl. Math. Mech.
,
26
(
12
), pp.
1585
1594
.
18.
Brebbia
,
C. A.
,
Faria Telles
,
J. C.
, and
Wrobel
,
L. C.
,
1984
,
Boundary Element Techniques: Theory and Applications in Engineering
,
Springer Verlag
,
New York
.
19.
Aliabadi
,
M. H.
, and
Wen
,
P. H.
,
2011
,
Boundary Element Methods in Engineering and Sciences
, Vol.
4
,
World Scientific
,
Singapore
.
20.
Crouch
,
S. L
, and
Mogilevskaya
,
S. G.
,
2024
,
A First Course in Boundary Element Methods
,
Springer
,
Switzerland
.
21.
Linkov
,
A. M.
,
Mogilevskaya
,
S. G.
,
Sladek
,
V.
, and
Sladek
,
J.
,
1998
, “Complex Hypersingular BEM in Plane Elasticity Problems,”
Singular Integrals in Boundary Element Method
,
Computational Mechanics Publication
,
Southampton, UK
, pp.
299
364
.
22.
Mogilevskaya
,
S. G.
, and
Linkov
,
A. M.
,
1998
, “
Complex Fundamental Solutions and Complex Variables Boundary Element Method in Elasticity
,”
Comput. Mech.
,
22
(
1
), pp.
88
92
.
23.
Savruk
,
M. P.
,
1981
, “Two-Dimensional Problems of Elasticity for Bodies With Cracks.” (Naukova Dumka, Kiev) (in Russian).
24.
Muskhelishvili
,
N. I.
,
1963
,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
,
Groningen, The Netherlands
.
25.
Zemlyanova
,
A. Y.
, and
Mogilevskaya
,
S. G.
,
2018
, “
Circular Inhomogeneity With Steigmann-Ogden Interface: Local Fields, Neutrality, and Maxwell’s Type Approximation Formula
,”
Int. J. Solids Struct.
,
135
, pp.
85
98
.
26.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
,
La Grotta
,
A.
, and
Stolarski
,
H. K.
,
2010
, “
The Effects of Surface Elasticity and Surface Tension on the Transverse Overall Elastic Behavior of Unidirectional Nano-composites
,”
Compos. Sci. Technol.
,
70
(
3
), pp.
427
434
.
27.
Han
,
Z.
,
Mogilevskaya
,
S. G.
, and
Schillinger
,
D.
,
2018
, “
Local Fields and Overall Transverse Properties of Unidirectional Composite Materials With Multiple Nanofibers and Steigmann-Ogden Interfaces
,”
Int. J. Solids Struct.
,
147
, pp.
166
182
.
28.
Mogilevskaya
,
S. G.
, and
Crouch
,
S. L.
, 1106
2004
, “
A Galerkin Boundary Integral Method for Multiple Circular Elastic Inclusions With Uniform Interphase Layers
,”
Int. J. Solids Struct.
,
41
(
5–6
), pp.
1285
1311
.
29.
Mogilevskaya
,
S. G.
,
Zemlyanova
,
A. Y.
, and
Zammarchi
,
M.
,
2018
, “
On the Elastic Far-Field Response of a Two-Dimensional Coated Circular Inhomogeneity: Analysis and Applications
,”
Int. J. Solids Struct.
,
130–131
, pp.
199
210
.
You do not currently have access to this content.