Graphical Abstract Figure

This molecular statics methodology is laid out to study the crack growth of any crystalline material under tensile loading to obtain mode-I SIF. Different crack positions relative to the loading boundary are studied for single-crystal silicon structures to obtain the relationship between the crack depth and SIF (the LEFM fracture criteria). The simulation results show a region of “bulk” where SIF and boundary load required for crack propagation are invariant concerning the crack depth. Away from the “bulk” region, the SIF and the boundary load required for crack propagation decreases linearly.

Graphical Abstract Figure

This molecular statics methodology is laid out to study the crack growth of any crystalline material under tensile loading to obtain mode-I SIF. Different crack positions relative to the loading boundary are studied for single-crystal silicon structures to obtain the relationship between the crack depth and SIF (the LEFM fracture criteria). The simulation results show a region of “bulk” where SIF and boundary load required for crack propagation are invariant concerning the crack depth. Away from the “bulk” region, the SIF and the boundary load required for crack propagation decreases linearly.

Close modal

Abstract

In the present work, an atomistic scale investigation is done on crystalline silicon to understand the effect of crack depth from the loading (pulling) boundary on the critical near-tip state of stress. For various depths of embedded cracks, the near-tip stress field has been calculated at the critical state just before the crack propagation initiation. This atomistically calculated stress field is found to be quite close to those found using continuum linear elasticity. Thereafter, the critical stress intensity factor (SIF) is calculated for all cases by fitting the atomistically calculated normal stress over inverse square-rooted distance from the crack tip. It has been found that the closer the crack is located to the loading boundary (i.e., lesser depth), the lower is the (locally calculated) critical SIF. This implies that it is easier to initiate crack propagation when the crack is located closer to the loading boundary. The claim is also strengthened by a similar observation of (globally calculated) boundary stresses at the critical state just before crack propagation initiation.

References

1.
Nguyen
,
B.
,
Celler
,
G.
, and
Mazuré
,
C.
,
2009
, “
A Review of SOI Technology and its Applications
,”
J. Integr. Circuit. Syst.
,
4
(
2
), pp.
51
54
.
2.
Aspar
,
B.
,
Moriceau
,
H.
,
Jalaguier
,
E.
,
Lagahe
,
C.
,
Soubie
,
A.
,
Biasse
,
B.
,
Papon
,
A. M.
, et al.,
2001
, “
The Generic Nature of the Smart-Cut® Process for Thin Film Transfer
,”
J. Electron. Mater.
,
30
(
7
), pp.
834
840
.
3.
Du
,
J.
,
Ko
,
W. H.
, and
Young
,
D. J.
,
2004
, “
Single Crystal Silicon MEMS Fabrication Based on Smart-Cut Technique
,”
Sens. Actuat. A
,
112
(
1
), pp.
116
121
.
4.
Bitzek
,
E.
,
Kermode
,
J. R.
, and
Gumbsch
,
P.
,
2015
, “
Atomistic Aspects of Fracture
,”
Int. J. Fract.
,
191
(
1–2
), pp.
13
30
.
5.
Swadener
,
J. G.
,
Baskes
,
M. I.
, and
Nastasi
,
M.
,
2002
, “
Molecular Dynamics Simulation of Brittle Fracture in Silicon
,”
Phys. Rev. Lett.
,
89
(
8
), pp.
19
22
.
6.
Cramer
,
T.
,
Wanner
,
A.
, and
Gumbsch
,
P.
,
2000
, “
Energy Dissipation and Path Instabilities in Dynamic Fracture of Silicon Single Crystals
,”
Phys. Rev. Lett.
,
85
(
4
), pp.
788
791
.
7.
Dontsova
,
E.
, and
Ballarini
,
R.
,
2017
, “
Atomistic Modeling of the Fracture Toughness of Silicon and Silicon-Silicon Interfaces
,”
Int. J. Fract.
,
207
(
1
), pp.
99
122
.
8.
Lee
,
G. H.
,
Na
,
S.
,
Chung
,
Y.
, and
Beom
,
H.
,
2021
, “
Atomistic Aspects of the Temperature Effect on Fracture Toughness of a Silicon Single Crystal
,”
Comput. Mater. Sci.
,
195
, p.
110489
.
9.
Masolin
,
A.
,
Bouchard
,
P. O.
,
Martini
,
R.
, and
Bernacki
,
M.
,
2013
, “
Thermo-Mechanical and Fracture Properties in Single-Crystal Silicon
,”
J. Mater. Sci.
,
48
(
3
), pp.
979
988
.
10.
Budarapu
,
P. R.
,
Javvaji
,
B.
,
Reinoso
,
J.
,
Paggi
,
M.
, and
Rabczuk
,
T.
,
2018
, “
A Three Dimensional Adaptive Multiscale Method for Crack Growth in Silicon
,”
Theor. Appl. Fract. Mech.
,
96
, pp.
576
603
.
11.
Zhuo
,
X. R.
, and
Beom
,
H. G.
,
2015
, “
Size-Dependent Fracture Properties of Cracked Silicon Nanofilms
,”
Mater. Sci. Eng. A
,
636
, pp.
470
475
.
12.
Bailey
,
N. P.
, and
Sethna
,
J. P.
,
2003
, “
Macroscopic Measure of the Cohesive Length Scale: Fracture of Notched Single-Crystal Silicon
,”
Phys. Rev. B - Conden. Matter Mater. Phys.
,
68
(
20
), pp.
2052041
2052048
.
13.
Cheng
,
S. H.
, and
Sun
,
C. T.
,
2014
, “
Size-Dependent Fracture Toughness of Nanoscale Structures: Crack-Tip Stress Approach in Molecular Dynamics
,”
J. Nanomech. Micromech.
,
4
(
4
), pp.
1
8
.
14.
Molaei
,
F.
,
2022
, “
Molecular Dynamics Simulation of Edge Crack Propagation in Single Crystalline Alpha Quartz
,”
J. Mole. Graph. Model.
,
111
, p.
108085
.
15.
Budarapu
,
P. R.
,
Gracie
,
R.
,
Bordas
,
S. P. A.
, and
Rabczuk
,
T.
,
2014
, “
An Adaptive Multiscale Method for Quasi-Static Crack Growth
,”
Comput. Mech.
,
53
(
6
), pp.
1129
1148
.
16.
Peng
,
P.
,
Liao
,
G.
,
Shi
,
T.
,
Tang
,
Z.
, and
Gao
,
Y.
,
2010
, “
Molecular Dynamic Simulations of Nanoindentation in Aluminum Thin Film on Silicon Substrate
,”
Appl. Surf. Sci.
,
256
(
21
), pp.
6284
6290
.
17.
Adnan
,
A.
, and
Sun
,
C. T.
,
2010
, “
Evolution of Nanoscale Defects to Planar Cracks in a Brittle Solid
,”
J. Mech. Phys. Solids
,
58
(
7
), pp.
983
1000
.
18.
Buehler
,
M. J.
,
van Duin
,
A. C.
, and
Goddard
,
W. A.
,
2006
, “
Multiparadigm Modeling of Dynamical Crack Propagation in Silicon Using a Reactive Force Field
,”
Phys. Rev. Lett.
,
96
(
9
), pp.
1
4
.
19.
van Duin
,
A. C.
,
Strachan
,
A.
,
Stewman
,
S.
,
Zhang
,
Q.
,
Xu
,
X.
, and
Goddard
,
W. A.
,
2003
, “
ReaxFF SiO Reactive Force Field for Silicon and Silicon Oxide Systems
,”
J. Phys. Chem. A
,
107
(
19
), pp.
3803
3811
.
20.
Munetoh
,
S.
,
Motooka
,
T.
,
Moriguchi
,
K.
, and
Shintani
,
A.
,
2007
, “
Interatomic Potential for Si-O Systems Using Tersoff Parameterization
,”
Comput. Mater. Sci.
,
39
(
2
), pp.
334
339
.
21.
Zhang
,
S.
,
Zhu
,
T.
, and
Belytschko
,
T.
,
2007
, “
Atomistic and Multiscale Analyses of Brittle Fracture in Crystal Lattices
,”
Phys. Rev. B - Conden. Matter Mater. Phys.
,
76
(
9
), pp.
1
10
.
22.
Griffith
,
A. A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. Lond. A
,
221
, pp.
163
198
.
23.
Huang
,
S.
,
Zhang
,
S.
,
Belytschko
,
T.
,
Terdalkar
,
S. S.
, and
Zhu
,
T.
,
2009
, “
Mechanics of Nanocrack: Fracture, Dislocation Emission, and Amorphization
,”
J. Mech. Phys. Solids
,
57
(
5
), pp.
840
850
.
24.
Lee
,
G. H.
,
Shim
,
J. S.
,
Cui
,
C. Y.
, and
Beom
,
H. G.
,
2019
, “
Hydrogen-Induced Cracking of an Aluminum Single Crystal: An Atomistic Simulation
,”
Comput. Mater. Sci.
,
169
, p.
109084
.
25.
Sakib
,
A. R. N.
, and
Adnan
,
A.
,
2012
, “
On the Size-Dependent Critical Stress Intensity Factor of Confined Brittle Nanofilms
,”
Eng. Fract. Mech.
,
86
, pp.
13
22
.
26.
Dai
,
D.
,
Hills
,
D.
,
Härkegard
,
G.
, and
Pross
,
J.
,
1998
, “
Simulation of the Growth of Near-Surface Defects
,”
Eng. Fract. Mech.
,
59
(
4
), pp.
415
424
.
27.
Sin
,
H.-C.
, and
Suh
,
N. P.
,
1984
, “
Subsurface Crack Propagation Due to Surface Traction in Sliding Wear
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
317
323
.
28.
Moftakhar
,
A.
, and
Glinka
,
G.
,
1992
, “
Calculation of Stress Intensity Factors by Efficient Integration of Weight Functions
,”
Eng. Fract. Mech.
,
43
(
5
), pp.
749
756
.
29.
Beghini
,
M.
,
Bertini
,
L.
, and
Fontanari
,
V.
,
1999
, “
Weight Function for an Inclined Edge Crack in a Semiplane
,”
Int. J. Fract.
,
99
(
4
), pp.
281
292
.
30.
Beghini
,
M.
,
Bertini
,
L.
, and
Fontanari
,
V.
,
2008
, “
A Weight Function for 2D Subsurface Cracks Under General Loading Conditions
,”
Eng. Fract. Mech.
,
75
(
3–4
), pp.
427
439
.
31.
Höchbauer
,
T.
,
Misra
,
A.
,
Nastasi
,
M.
, and
Mayer
,
J. W.
,
2002
, “
Physical Mechanisms Behind the Ion-Cut in Hydrogen Implanted Silicon
,”
ASME J. Appl. Phys.
,
92
(
5
), pp.
2335
2342
.
32.
Anderson
,
T.
,
2017
,
Fracture Mechanics: Fundamentals and Applications
, 4th ed.,
CRC Press
,
Boca Raton, FL
.
33.
Zhang
,
J.
,
Ma
,
F.
,
Xu
,
K.
, and
Xin
,
X.
,
2003
, “
Anisotropy Analysis of the Surface Energy of Diamond Cubic Crystals
,”
Surf. Interface Anal.
,
35
(
10
), pp.
805
809
.
34.
Shah
,
J. S.
, and
Straumanis
,
M.
,
1972
, “
Thermal Expansion Behavior of Silicon at Low Temperatures
,”
Solid State Commun.
,
10
(
1
), pp.
159
162
.
35.
Weber
,
T. A.
, and
Stillinger
,
F. H.
,
1985
, “
Local Order and Structural Transitions in Amorphous Metal-Metalloid Alloys
,”
Phys. Rev. B
,
31
(
4
), pp.
1954
1963
.
36.
Nishinaga
,
T.
,
2014
,
Handbook of Crystal Growth: Fundamentals
, 2nd ed.,
Elsevier
,
Netherlands
.
37.
Arai
,
N.
,
Takeda
,
S.
, and
Kohyama
,
M.
,
1997
, “
Self-Interstitial Clustering in Crystalline Silicon
,”
Phys. Rev. Lett.
,
78
(
22
), pp.
4265
4268
.
38.
Alippi
,
P.
, and
Colombo
,
L.
,
2000
, “
Lattice-Strain Field Induced by {311} Self-Interstitial Defects in Silicon
,”
Phys. Rev. B
,
62
(
3
), pp.
1815
1820
.
39.
Balamane
,
H.
,
Halicioglu
,
T.
, and
Tiller
,
W. A.
,
1992
, “
Comparative Study of Silicon Empirical Interatomic Potentials
,”
Phys. Rev. B
,
46
(
4
), pp.
2250
2279
.
40.
Tersoff
,
J.
,
1989
, “
Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems
,”
Phys. Rev. B
,
39
(
8
), pp.
5566
5568
.
41.
Stillinger
,
F. H.
, and
Weber
,
T. A.
,
1985
, “
Computer Simulation of Local Order in Condensed Phases of Silicon
,”
Phys. Rev. B
,
31
(
8
), pp.
5262
5271
.
42.
Yoo
,
S. H.
,
Lee
,
B.
, and
Kang
,
K.
,
2021
, “
Density Functional Theory Study of the Mechanical Behavior of Silicene and Development of a Tersoff Interatomic Potential Model Tailored for Elastic Behavior
,”
Nanotechnol.
,
32
(
29
), p.
295702
.
43.
Thompson
,
A. P.
,
Aktulga
,
H. M.
,
Berger
,
R.
,
Bolintineanu
,
D. S.
,
Brown
,
W. M.
,
Crozier
,
P. S.
,
Kohlmeyer
,
A.
,
Moore
,
S. G.
, et al.,
2022
, “
LAMMPS - A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales
,”
Comput. Phys. Commun.
,
271
, p.
108171
.
44.
Stukowski
,
A.
,
2009
, “
Visualization and Analysis of Atomistic Simulation Data With Ovito—The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
45.
Brantley
,
W. A.
,
1973
, “
Calculated Elastic Constants for Stress Problems Associated With Semiconductor Devices
,”
ASME J. Appl. Phys.
,
44
(
1
), pp.
534
535
.
46.
Sahmani
,
S.
,
Aghdam
,
M. M.
, and
Bahrami
,
M.
,
2017
, “
An Efficient Size-Dependent Shear Deformable Shell Model and Molecular Dynamics Simulation for Axial Instability Analysis of Silicon Nanoshells
,”
J. Mole. Graphics Modell.
,
77
, pp.
263
279
.
47.
Alekseev
,
P. A.
,
Borodin
,
B. R.
,
Geydt
,
P.
,
Khayrudinov
,
V.
,
Bespalova
,
K.
,
Kirilenko
,
D. A.
, and
Reznik
,
R. R.
,
2021
, “
Effect of Crystal Structure on the Young’s Modulus of GaP Nanowires
,”
Nanotechnol.
,
32
(
38
), p.
385706
.
48.
Lekhnitskii
,
S. G.
,
Fern
,
P.
,
Brandstatter
,
J. J.
, and
Dill
,
E. H.
,
1964
, “
Theory of Elasticity of an Anisotropic Elastic Body
,”
Phys. Today
,
17
(
1
), pp.
84
84
.
49.
Kittel
,
C.
,
2005
,
Introduction to Solid State Physics
, 8th ed.,
Wiley
,
New York
.
50.
Huang
,
D.
,
Zhang
,
Q.
, and
Qiao
,
P.
,
2011
, “
Molecular Dynamics Evaluation of Strain Rate and Size Effects on Mechanical Properties of FCC Nickel Nanowires
,”
Comput. Mater. Sci.
,
50
(
3
), pp.
903
910
.
51.
Hestenes
,
M.
, and
Stiefel
,
E.
,
1952
, “
Methods of Conjugate Gradients for Solving Linear Systems
,”
J. Res. Nat. Bureau Stand.
,
49
(
6
), p.
409
.
52.
Ray
,
J. R.
,
1988
, “
Elastic Constants and Statistical Ensembles in Molecular Dynamics
,”
Comput. Phys. Rep.
,
8
(
3
), pp.
109
151
.
53.
Kumagai
,
T.
,
Izumi
,
S.
,
Hara
,
S.
, and
Sakai
,
S.
,
2007
, “
Development of Bond-Order Potentials That Can Reproduce the Elastic Constants and Melting Point of Silicon for Classical Molecular Dynamics Simulation
,”
Comput. Mater. Sci.
,
39
(
2
), pp.
457
464
.
54.
Hall
,
J. J.
,
1967
, “
Electronic Effects in the Elastic Constants of N-Type Silicon
,”
Phys. Rev.
,
161
(
3
), pp.
756
761
.
55.
Lee
,
B.
, and
Rudd
,
R. E.
,
2007
, “
First-Principles Calculation of Mechanical Properties of Si001 Nanowires and Comparison to Nanomechanical Theory
,”
Phys. Rev. B - Conden. Matter Mater. Phys.
,
75
(
3
), pp.
1
13
.
56.
Cowley
,
E. R.
,
1988
, “
Lattice Dynamics of Silicon With Empirical Many-Body Potentials
,”
Phys. Rev. Lett.
,
60
(
23
), pp.
2379
2381
.
57.
Hopcroft
,
M. A.
,
Nix
,
W. D.
, and
Kenny
,
T. W.
,
2010
, “
What is the Young’s Modulus of Silicon?
,”
J. Microelectromech. Syst.
,
19
(
2
), pp.
229
238
.
58.
Lemak
,
A. S.
, and
Balabaev
,
N. K.
,
1994
, “
On the Berendsen Thermostat
,”
Mol. Simul.
,
13
(
3
), pp.
177
187
.
59.
Martín Pendás
,
A.
,
2002
, “
Stress, Virial, and Pressure in the Theory of Atoms in Molecules
,”
J. Chem. Phys.
,
117
(
3
), pp.
965
979
.
60.
Singh
,
A.
, and
Singh
,
G.
,
2023
, “
A Localized Near Crack Tip Stress Field Approach for Calculating the Fracture Strength of an Anisotropic Solid at an Atomistic Scale
,”
Mech. Mater.
,
181
, p.
104632
.
61.
Ebrahimi
,
F.
, and
Kalwani
,
L.
,
1999
, “
Fracture Anisotropy in Silicon Single Crystal
,”
Mater. Sci. Eng. A
,
268
(
1–2
), pp.
116
126
.
62.
Fitzgerald
,
A. M.
,
Iyer
,
R. S.
,
Dauskardt
,
R. H.
, and
Kenny
,
T. W.
,
2002
, “
Subcritical Crack Growth in Single-Crystal Silicon Using Micromachined Specimens
,”
J. Mater. Res.
,
17
(
3
), pp.
683
692
.
63.
Sumigawa
,
T.
,
Ashida
,
S.
,
Tanaka
,
S.
,
Sanada
,
K.
, and
Kitamura
,
T.
,
2015
, “
Fracture Toughness of Silicon in Nanometer-Scale Singular Stress Field
,”
Eng. Fract. Mech.
,
150
, pp.
161
167
.
64.
Zhou
,
M.
,
2003
, “
A New Look at the Atomic Level Virial Stress: On Continuum-Molecular System Equivalence
,”
Proc. R. Soc. Lond. A: Math., Phys. Eng. Sci.
,
459
(
2037
), pp.
2347
2392
.
65.
Pizzagalli
,
L.
,
Godet
,
J.
,
Guénolé
,
J.
,
Brochard
,
S.
,
Holmstrom
,
E.
,
Nordlund
,
K.
, and
Albaret
,
T.
,
2013
, “
A New Parametrization of the Stillinger-Weber Potential for an Improved Description of Defects and Plasticity of Silicon
,”
J. Phys. Conden. Matter
,
25
(
5
), p.
055801
.
66.
Smith
,
M.
,
2009
,
ABAQUS/Standard User’s Manual, Version 6.9
,
Dassault Systèmes Simulia Corp
,
Johnston, RI
.
67.
Huang
,
Z.
,
Wagner
,
D.
,
Bathias
,
C.
, and
Paris
,
P. C.
,
2010
, “
Subsurface Crack Initiation and Propagation Mechanisms in Gigacycle Fatigue
,”
Acta Mater.
,
58
(
18
), pp.
6046
6054
.
68.
Shiozawa
,
K.
,
Morii
,
Y.
,
Nishino
,
S.
, and
Lu
,
L.
,
2006
, “
Subsurface Crack Initiation and Propagation Mechanism in High-Strength Steel in a Very High Cycle Fatigue Regime
,”
Int. J. Fatigue
,
28
(
11
), pp.
1521
1532
.
69.
Starker
,
P.
,
Wohlfahrt
,
H.
, and
Macherauch
,
E.
,
1979
, “
Subsurface Crack Initiation During Fatigueas a Result of Residual Stresses
,”
Fatigue Fract. Eng. Mater. Struct.
,
1
(
3
), pp.
319
327
.
You do not currently have access to this content.