Abstract

Thin-walled cylindrical shell structures are revisited with the objective of increasing the axial load-carrying capacity. By using the postbuckling reserve of rectangular plates, polygonal shells are studied, which combines the response of a plate-like structure with a shell-like structure. These “plate-shells” are shown to be imperfection insensitive for a range of polygonal shell designs. Furthermore, their collapse load exceeds the corresponding load for a circular cylindrical shell. These results are a significant departure from the well-known imperfection sensitivity in the axial compressive response of cylindrical shells.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Von Karman
,
T.
, and
Tsien
,
H.
,
1939
, “
The Buckling of Spherical Shells by External Pressure
,”
J. Aeronaut. Sci.
,
7
(
2
), pp.
43
50
.
2.
Thompson
,
J.
,
1961
, “
The Elastic Stability of Spherical Shells
,”
Ph.D. dissertation
,
Cambridge University
.
3.
Hutchinson
,
J.
,
1967
, “
Imperfection Sensitivity of Externally Pressurized Spherical Shells
,”
ASME J. Appl. Mech.
,
34
(
1
), pp.
49
55
.
4.
Brush
,
D.
, and
Almroth
,
B.
,
1975
,
Buckling of Bars, Plates and Shells
,
Mc-Graw Hill
,
New York
.
5.
Singer
,
J.
,
Arbocz
,
J.
, and
Weller
,
T.
,
2002
,
Buckling Experiments, Experimental Methods in Buckling of Thin-Walled Structures. Shells, Build-Up Structures, Composites, and Additional Topics
, Vol.
2
,
Wiley
,
New York
.
6.
Seide
,
P.
,
Weingarten
,
V. I.
, and
Morgan
,
E. J.
,
1960
, “
The Development of Design Criteria for Elastic Stability of Thin Shell Structures
,” Final Report: STL/TR-60-0000-19425, Space Technology Laboratories, Inc., Los Angeles, CA.
7.
Weingarten
,
V. I.
,
Seide
,
P.
, and
Peterson
,
J. P.
,
1968
, “
Buckling of Thin-Walled Circular Cylinders
,” NASA/SP-8007.
8.
Hilburger
,
M. W.
,
2020
, “
Buckling of Thin-Walled Circular Cylinders
,” NASA/SP-8007-2020/REV 2.
9.
Donnell
,
L. H.
,
1934
, “
A New Theory for the Buckling of Thin Cylinders Under Axial Compression and Bending
,”
Trans. ASME
,
56
(
8
), pp.
795
806
.
10.
Almroth
,
B. O.
,
1966
, “
Influence of Imperfections and Edge Restraint on the Buckling of Axially Compressed Cylinders
,” Technical Report, Lockheed Missiles and Space Company.
11.
Stein
,
M.
,
1965
, “
The Influence of Prebuckling Deformations and Stresses on the Buckling of Perfect Cylinders
,” NASA TR-R-190.
12.
Tennyson
,
R. C.
,
1969
, “
Buckling Modes of Circular Cylindrical Shells Under Axial Compression
,”
AIAA J.
,
7
(
8
), pp.
1481
1487
.
13.
Hoff
,
N. J.
,
1966
, “
The Effect of the Edge Conditions on the Buckling of Thin-Walled Circular Cylindrical Shells in Axial Compression
,”
Proceedings: Buckling of the Eleventh International Congress of Applied Mechanics 1964
,
Munich, Germany
, Springer-Verlag.
14.
Babcock
,
C.
, and
Sechler
,
E. E.
,
1963
, “
The Effect of Initial Imperfections on the Buckling Stress of Cylindrical Shells
,” NASA TN D-2005, California Institute of Technology.
15.
Singer
,
J.
, and
Abramovich
,
H.
,
1995
, “
The Development of Shell Imperfection Measurement Techniques
,”
Thin-Walled Struct.
,
23
(
1–4
), pp.
379
398
.
16.
Koiter
,
W. T.
,
1963
, “
The Effect of Axisymmetric Imperfections on the Buckling of Cylindrical Shells Under Axial Compression
,”
Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings
,
66
, pp.
265
279
.
17.
Budiansky
,
B.
, and
Hutchinson
,
J.
,
1972
, “
Buckling of Circular Cylindrical Shells Under Axial Compression
,” Contributions to the Theory of Aircraft Structures Delft University Press, pp.
239
259
.
18.
Hutchinson
,
J. W.
,
2010
, “
Knockdown Factors for Buckling of Cylindrical and Spherical Shells Subject to Reduced Biaxial Membrane Stress
,”
Int. J. Solids Struct.
,
47
(
10
), pp.
1443
1448
.
19.
Audoly
,
B.
, and
Hutchinson
,
J.
,
2020
, “
Localization in Spherical Shell Buckling
,”
J. Mech. Phys. Solids
,
136
(The Davide Bigoni 60th Anniversary Issue), p.
103720
.
20.
Lee
,
A.
,
Jimenez
,
F. L.
,
Marthelot
,
J.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2016
, “
The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111005
.
21.
Hutchinson
,
J.
,
2020
, “
New Developments in Shell Stability
,”
Extreme Mech. Lett.
,
39
, p.
100805
.
22.
Gerasimidis
,
S.
,
Virot
,
E.
,
Hutchinson
,
J.
, and
Rubinstein
,
S.
,
2018
, “
On Establishing Buckling Knockdowns for Imperfection-Sensitive Shell Structures
,”
ASME J. Appl. Mech.
,
85
(
9
), p.
091010
.
23.
Thompson
,
J. M. T.
,
Hutchinson
,
J.
, and
Sieber
,
J.
,
2017
, “
Probing Shells Against Buckling: A Non-Destructive Technique for Laboratory Testing
,”
Int. J. Bifurcation Chaos
,
27
(
14
), p.
1730048
.
24.
Hutchinson
,
J.
, and
Thompson
,
M. J. T.
,
2018
, “
Imperfections and Energy Barriers in Shell Buckling
,”
Int. J. Solids Struct.
,
148–149
(Special Issue Dedicated to the Memory of George Simitses), pp.
157
168
.
25.
Hutchinson
,
J.
, and
Thompson
,
M. J. T.
,
2017
, “
Nonlinear Buckling Behavior of Spherical Shells: Barriers and Symmetry-Breaking Dimples
,”
Philos. Trans. R. Soc., A
,
375
(
2093
), p.
20160154
.
26.
Jimenez
,
F. L.
,
Marthelot
,
J.
,
Lee
,
A.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2017
, “
Technical Brief: Knockdown Factor for the Buckling of Spherical Shells Containing Large-Amplitude Geometric Defects
,”
ASME J. Appl. Mech.
,
84
(
3
), p.
034501
.
27.
Groh
,
R. M. J.
, and
Pirrera
,
A.
,
2019
, “
On the Role of Localizations in Buckling of Axially Compressed Cylinders
,”
Proc. R. Soc. A
,
475
(
2224
), p.
20190006
.
28.
Gerasimidis
,
S.
, and
Hutchinson
,
J. W.
,
2021
, “
Dent Imperfections in Shell Buckling: the Role of Geometry, Residual Stress and Plasticity
,”
ASME J. Appl. Mech.
,
88
(
3
), p.
031007
.
29.
Tvergaard
,
V.
,
1983
, “
Plastic Buckling of Axially Compressed Circular Cylindrical Shells
,”
Thin-Walled Struct.
,
1
(
2
), pp.
139
163
.
30.
Lykhachova
,
O.
, and
Evkin
,
A.
,
2020
, “
Effect of Plasticity in the Concept of Local Buckling of Axially Compressed Cylindrical Shells
,”
Thin-Walled Struct.
,
155
, p.
106965
.
31.
Hutchinson
,
J.
,
1972
, “
On the Postbuckling Behavior of Imperfection-Sensitive Structures in the Plastic Range
,”
ASME J. Appl. Mech.
,
39
(
1
), pp.
155
162
.
32.
D’Mello
,
R. J.
, and
Waas
,
A. M.
,
2023
, “
The Effects of Favorable and Unfavorable Geometric Perturbations on the Response of Pressure-Loaded Hemispherical Shells
,”
ASME J. Appl. Mech.
,
90
(
5
), p.
051009
.
33.
Abbasi
,
A.
,
Derveni
,
F.
, and
Reis
,
P. M.
,
2023
, “
Comparing the Buckling Strength of Spherical Shells With Dimpled Versus Bumpy Defects
,”
ASME J. Appl. Mech.
,
90
(
6
), p.
061008
.
34.
Almroth
,
B. O.
,
1966
, “
Influence of Edge Conditions on the Stability of Axially Compressed Cylindrical Shells
,”
AIAA J.
,
4
(
1
), pp.
134
140
.
35.
Hutchinson
,
J.
, and
Koiter
,
W.
,
1970
, “
Postbuckling Theory
,”
ASME Appl. Mech. Rev.
,
23
(
12
), pp.
1353
1366
.
36.
Vijayachandran
,
A. A.
, and
Waas
,
A. M.
,
2023
, “
Optimized Creasing Pattern for Maximizing Natural Frequencies of a Thin Elastic Plate
,”
J. Sound Vib.
,
542
, p.
117334
.
37.
Timoshenko
,
S.
, and
Gere
,
J.
,
1961
,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
38.
Bazant
,
Z.
, and
Cedolin
,
L.
,
1991
,
Stability of Structures
,
Dover Publications
,
New York
.
You do not currently have access to this content.