Abstract
Thin-walled cylindrical shell structures are revisited with the objective of increasing the axial load-carrying capacity. By using the postbuckling reserve of rectangular plates, polygonal shells are studied, which combines the response of a plate-like structure with a shell-like structure. These “plate-shells” are shown to be imperfection insensitive for a range of polygonal shell designs. Furthermore, their collapse load exceeds the corresponding load for a circular cylindrical shell. These results are a significant departure from the well-known imperfection sensitivity in the axial compressive response of cylindrical shells.
Issue Section:
Research Papers
Graphical Abstract Figure
Issue Section:
Research Papers
References
1.
Von Karman
, T.
, and Tsien
, H.
, 1939
, “The Buckling of Spherical Shells by External Pressure
,” J. Aeronaut. Sci.
, 7
(2
), pp. 43
–50
. 2.
Thompson
, J.
, 1961
, “The Elastic Stability of Spherical Shells
,” Ph.D. dissertation
, Cambridge University
.3.
Hutchinson
, J.
, 1967
, “Imperfection Sensitivity of Externally Pressurized Spherical Shells
,” ASME J. Appl. Mech.
, 34
(1
), pp. 49
–55
. 4.
Brush
, D.
, and Almroth
, B.
, 1975
, Buckling of Bars, Plates and Shells
, Mc-Graw Hill
, New York
.5.
Singer
, J.
, Arbocz
, J.
, and Weller
, T.
, 2002
, Buckling Experiments, Experimental Methods in Buckling of Thin-Walled Structures. Shells, Build-Up Structures, Composites, and Additional Topics
, Vol. 2
, Wiley
, New York
.6.
Seide
, P.
, Weingarten
, V. I.
, and Morgan
, E. J.
, 1960
, “The Development of Design Criteria for Elastic Stability of Thin Shell Structures
,” Final Report: STL/TR-60-0000-19425, Space Technology Laboratories, Inc., Los Angeles, CA.7.
Weingarten
, V. I.
, Seide
, P.
, and Peterson
, J. P.
, 1968
, “Buckling of Thin-Walled Circular Cylinders
,” NASA/SP-8007.8.
Hilburger
, M. W.
, 2020
, “Buckling of Thin-Walled Circular Cylinders
,” NASA/SP-8007-2020/REV 2.9.
Donnell
, L. H.
, 1934
, “A New Theory for the Buckling of Thin Cylinders Under Axial Compression and Bending
,” Trans. ASME
, 56
(8
), pp. 795
–806
. 10.
Almroth
, B. O.
, 1966
, “Influence of Imperfections and Edge Restraint on the Buckling of Axially Compressed Cylinders
,” Technical Report, Lockheed Missiles and Space Company.11.
Stein
, M.
, 1965
, “The Influence of Prebuckling Deformations and Stresses on the Buckling of Perfect Cylinders
,” NASA TR-R-190.12.
Tennyson
, R. C.
, 1969
, “Buckling Modes of Circular Cylindrical Shells Under Axial Compression
,” AIAA J.
, 7
(8
), pp. 1481
–1487
.13.
Hoff
, N. J.
, 1966
, “The Effect of the Edge Conditions on the Buckling of Thin-Walled Circular Cylindrical Shells in Axial Compression
,” Proceedings: Buckling of the Eleventh International Congress of Applied Mechanics 1964
, Munich, Germany
, Springer-Verlag.14.
Babcock
, C.
, and Sechler
, E. E.
, 1963
, “The Effect of Initial Imperfections on the Buckling Stress of Cylindrical Shells
,” NASA TN D-2005, California Institute of Technology.15.
Singer
, J.
, and Abramovich
, H.
, 1995
, “The Development of Shell Imperfection Measurement Techniques
,” Thin-Walled Struct.
, 23
(1–4
), pp. 379
–398
. 16.
Koiter
, W. T.
, 1963
, “The Effect of Axisymmetric Imperfections on the Buckling of Cylindrical Shells Under Axial Compression
,” Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings
, 66
, pp. 265
–279
.17.
Budiansky
, B.
, and Hutchinson
, J.
, 1972
, “Buckling of Circular Cylindrical Shells Under Axial Compression
,” Contributions to the Theory of Aircraft Structures Delft University Press, pp. 239
–259
.18.
Hutchinson
, J. W.
, 2010
, “Knockdown Factors for Buckling of Cylindrical and Spherical Shells Subject to Reduced Biaxial Membrane Stress
,” Int. J. Solids Struct.
, 47
(10
), pp. 1443
–1448
. 19.
Audoly
, B.
, and Hutchinson
, J.
, 2020
, “Localization in Spherical Shell Buckling
,” J. Mech. Phys. Solids
, 136
(The Davide Bigoni 60th Anniversary Issue), p. 103720
. 20.
Lee
, A.
, Jimenez
, F. L.
, Marthelot
, J.
, Hutchinson
, J. W.
, and Reis
, P. M.
, 2016
, “The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells
,” ASME J. Appl. Mech.
, 83
(11
), p. 111005
. 21.
Hutchinson
, J.
, 2020
, “New Developments in Shell Stability
,” Extreme Mech. Lett.
, 39
, p. 100805
. 22.
Gerasimidis
, S.
, Virot
, E.
, Hutchinson
, J.
, and Rubinstein
, S.
, 2018
, “On Establishing Buckling Knockdowns for Imperfection-Sensitive Shell Structures
,” ASME J. Appl. Mech.
, 85
(9
), p. 091010
. 23.
Thompson
, J. M. T.
, Hutchinson
, J.
, and Sieber
, J.
, 2017
, “Probing Shells Against Buckling: A Non-Destructive Technique for Laboratory Testing
,” Int. J. Bifurcation Chaos
, 27
(14
), p. 1730048
.24.
Hutchinson
, J.
, and Thompson
, M. J. T.
, 2018
, “Imperfections and Energy Barriers in Shell Buckling
,” Int. J. Solids Struct.
, 148–149
(Special Issue Dedicated to the Memory of George Simitses), pp. 157
–168
.25.
Hutchinson
, J.
, and Thompson
, M. J. T.
, 2017
, “Nonlinear Buckling Behavior of Spherical Shells: Barriers and Symmetry-Breaking Dimples
,” Philos. Trans. R. Soc., A
, 375
(2093
), p. 20160154
.26.
Jimenez
, F. L.
, Marthelot
, J.
, Lee
, A.
, Hutchinson
, J. W.
, and Reis
, P. M.
, 2017
, “Technical Brief: Knockdown Factor for the Buckling of Spherical Shells Containing Large-Amplitude Geometric Defects
,” ASME J. Appl. Mech.
, 84
(3
), p. 034501
. 27.
Groh
, R. M. J.
, and Pirrera
, A.
, 2019
, “On the Role of Localizations in Buckling of Axially Compressed Cylinders
,” Proc. R. Soc. A
, 475
(2224
), p. 20190006
. 28.
Gerasimidis
, S.
, and Hutchinson
, J. W.
, 2021
, “Dent Imperfections in Shell Buckling: the Role of Geometry, Residual Stress and Plasticity
,” ASME J. Appl. Mech.
, 88
(3
), p. 031007
. 29.
Tvergaard
, V.
, 1983
, “Plastic Buckling of Axially Compressed Circular Cylindrical Shells
,” Thin-Walled Struct.
, 1
(2
), pp. 139
–163
. 30.
Lykhachova
, O.
, and Evkin
, A.
, 2020
, “Effect of Plasticity in the Concept of Local Buckling of Axially Compressed Cylindrical Shells
,” Thin-Walled Struct.
, 155
, p. 106965
. 31.
Hutchinson
, J.
, 1972
, “On the Postbuckling Behavior of Imperfection-Sensitive Structures in the Plastic Range
,” ASME J. Appl. Mech.
, 39
(1
), pp. 155
–162
. 32.
D’Mello
, R. J.
, and Waas
, A. M.
, 2023
, “The Effects of Favorable and Unfavorable Geometric Perturbations on the Response of Pressure-Loaded Hemispherical Shells
,” ASME J. Appl. Mech.
, 90
(5
), p. 051009
. 33.
Abbasi
, A.
, Derveni
, F.
, and Reis
, P. M.
, 2023
, “Comparing the Buckling Strength of Spherical Shells With Dimpled Versus Bumpy Defects
,” ASME J. Appl. Mech.
, 90
(6
), p. 061008
. 34.
Almroth
, B. O.
, 1966
, “Influence of Edge Conditions on the Stability of Axially Compressed Cylindrical Shells
,” AIAA J.
, 4
(1
), pp. 134
–140
. 35.
Hutchinson
, J.
, and Koiter
, W.
, 1970
, “Postbuckling Theory
,” ASME Appl. Mech. Rev.
, 23
(12
), pp. 1353
–1366
.36.
Vijayachandran
, A. A.
, and Waas
, A. M.
, 2023
, “Optimized Creasing Pattern for Maximizing Natural Frequencies of a Thin Elastic Plate
,” J. Sound Vib.
, 542
, p. 117334
. 37.
Timoshenko
, S.
, and Gere
, J.
, 1961
, Theory of Elastic Stability
, McGraw-Hill
, New York
.38.
Bazant
, Z.
, and Cedolin
, L.
, 1991
, Stability of Structures
, Dover Publications
, New York
.Copyright © 2024 by ASME
You do not currently have access to this content.