Abstract

Bistable metamaterials, characterized by their ability to transition between two stable configurations, find applications in the fields of morphing structures, energy harvesting systems, and bionics. Shape memory polymers (SMP) are a class of smart materials that can revert to their original shape from a deformed state when subjected to appropriate stimuli. In this study, we have designed and manufactured a tunable bistable metamaterial incorporating SMP, utilizing 3D printing technology. The unit cell of the metamaterial comprises a curved beam supported by walls. By modifying the material distribution, the structure can transition from a monostable to bistable states. To deepen our understanding of the underlying mechanisms of the tunable bistable metamaterial, we developed a theoretical model that quantifies the characteristics of state transitions. In particular, our theory can accurately predict the criteria for state transitions, governed by the modulus ratio between the curved beam and supporting walls. The accuracy of these criteria is validated through a combination of experimental and theoretical analyses, alongside finite element simulations. By applying this criterion, we can readily control the material's modulus ratio in the structure through thermal stimuli, thereby demonstrating the feasibility of tunable and programmable bistable metamaterials in this work.

References

1.
Chi
,
Y. D.
,
Li
,
Y. B.
,
Zhao
,
Y.
,
Hong
,
Y. Y.
,
Tang
,
Y. C.
, and
Yin
,
J.
,
2022
, “
Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities
,”
Adv Mater.
,
34
(
19
), p.
2110384
.
2.
Medina
,
L.
,
2023
, “
Effect of Membrane Load on the Stability of an Electrostatically Actuated Initially Curved Circular Micro Plate
,”
ASME J. Appl. Mech.
,
90
(
3
), p.
031002
.
3.
Diaconu
,
C. G.
,
Weaver
,
P. M.
, and
Mattioni
,
F.
,
2008
, “
Concepts for Morphing Airfoil Sections Using Bi-Stable Laminated Composite Structures
,”
Thin Walled Struct.
,
46
(
6
), pp.
689
701
.
4.
Kuder
,
I. K.
,
Fasel
,
U.
,
Ermanni
,
P.
, and
Arrieta
,
A. F.
,
2016
, “
Concurrent Design of a Morphing Aerofoil With Variable Stiffness bi-Stable Laminates
,”
Smart Mater. Struct.
,
25
(
11
), p.
115001
.
5.
Fan
,
L.
,
He
,
R.
,
Chen
,
Y.
,
Hu
,
S.
, and
Sareh
,
P.
,
2024
, “
Cyclic Reconfigurability of Deployable Ring Structures With Angulated Beams
,”
ASME J. Mech. Rob.
,
16
(
7
), p.
071005
.
6.
Pellegrini
,
S. P.
,
Tolou
,
N.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2013
, “
Bistable Vibration Energy Harvesters: A Review
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1303
1312
.
7.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
8.
Shi
,
P.
,
Chen
,
Y.
,
Wei
,
J. L.
,
Xie
,
T. Y.
,
Feng
,
J.
, and
Sareh
,
P.
,
2024
, “
Design and Low-Velocity Impact Behavior of an Origami-Bellow Foldcore Honeycomb Acoustic Metastructure
,”
Thin Walled Struct.
,
197
, p.
111607
.
9.
Winkelmann
,
C.
,
Kim
,
S. S.
, and
La Saponara
,
V.
,
2010
, “
Design and Development of Hybrid Composite Bistable Structures for Energy Absorption Under Quasi-Static Tensile Loading
,”
Compos. Struct.
,
93
(
1
), pp.
171
178
.
10.
Hector
,
K. W.
,
Jarrold
,
G.
,
Cho
,
Y. S.
,
Restrepo
,
D.
,
Mankame
,
N.
, and
Zavattieri
,
P. D.
,
2023
, “
Energy Dissipating Architected Materials With Transversely Curved Tapes and Independently Tunable Properties
,”
Extreme Mech. Lett.
,
58
, p.
101946
.
11.
Ma
,
H. Y.
,
Wang
,
K.
,
Zhao
,
H. F.
,
Hong
,
Y. L.
,
Zhou
,
Y. L.
,
Xue
,
J.
,
Li
,
Q. S.
,
Wang
,
G.
, and
Yan
,
B.
,
2023
, “
Energy Dissipation in Multistable Auxetic Mechanical Metamaterials
,”
Compos. Struct.
,
304
, p.
116410
.
12.
Zhang
,
Z. W.
,
Chen
,
L. W.
, and
Xu
,
Z. D.
,
2022
, “
Snap-Through Behavior of Bistable Beam With Variable Sections: Mechanical Model and Experimental Study
,”
Smart Mater. Struct.
,
31
(
10
), p.
105004
.
13.
Liu
,
M. C.
,
Gomez
,
M.
, and
Vella
,
D.
,
2021
, “
Delayed Bifurcation in Elastic Snap-Through Instabilities
,”
J. Mech. Phys. Solids
,
151
, p.
104386
.
14.
Gomez
,
M.
,
Moulton
,
D. E.
, and
Vella
,
D.
,
2019
, “
Dynamics of Viscoelastic Snap-Through
,”
J. Mech. Phys. Solids
,
124
, pp.
781
813
.
15.
Hua
,
J.
,
Lei
,
H. S.
,
Gao
,
C. F.
, and
Fang
,
D. N.
,
2022
, “
A Novel Design of Multistable Metastructure With Nonuniform Cross Section
,”
ASME J. Appl. Mech.
,
89
(
5
), p.
051010
.
16.
Liu
,
T. N.
,
Chen
,
Y. Z.
,
Liu
,
L. W.
,
Liu
,
Y. J.
,
Leng
,
J. S.
, and
Jin
,
L. H.
,
2021
, “
Effect of Imperfections on Pseudo-Bistability of Viscoelastic Domes
,”
Extreme Mech. Lett.
,
49
, p.
101477
.
17.
Hua
,
J.
,
Lei
,
H. S.
,
Gao
,
C. F.
,
Guo
,
X. G.
, and
Fang
,
D. N.
,
2020
, “
Parameters Analysis and Optimization of a Typical Multistable Mechanical Metamaterial
,”
Extreme Mech. Lett.
,
35
, p.
100640
.
18.
Chen
,
Z.
,
Guo
,
Q. H.
,
Majidi
,
C.
,
Chen
,
W. Z.
,
Srolovitz
,
D. J.
, and
Haataja
,
M. P.
,
2012
, “
Nonlinear Geometric Effects in Mechanical Bistable Morphing Structures
,”
Phys. Rev. Lett.
,
109
(
11
), p.
114302
.
19.
Sousa
,
C. S.
,
Camanho
,
P. P.
, and
Suleman
,
A.
,
2013
, “
Analysis of Multistable Variable Stiffness Composite Plates
,”
Compos. Struct.
,
98
, pp.
34
46
.
20.
Restrepo
,
D.
,
Mankame
,
N. D.
, and
Zavattieri
,
P. D.
,
2015
, “
Phase Transforming Cellular Materials
,”
Extreme Mech. Lett.
,
4
, pp.
52
60
.
21.
Liang
,
K.
,
Zhou
,
S. J.
,
Luo
,
Y. J.
,
Zhang
,
X. P.
, and
Kang
,
Z.
,
2024
, “
Topology Optimization Design of Recoverable Bistable Structures for Energy Absorption With Embedded Shape Memory Alloys
,”
Thin Walled Struct.
,
198
, p.
111757
.
22.
Mofatteh
,
H.
,
Shahryari
,
B.
,
Mirabolghasemi
,
A.
,
Seyedkanani
,
A.
,
Shirzadkhani
,
R.
,
Desharnais
,
G.
, and
Akbarzadeh
,
A.
,
2022
, “
Programming Multistable Metamaterials to Discover Latent Functionalities
,”
Adv. Sci.
,
9
(
33
), p.
2202883
.
23.
Tao
,
Q.
,
Xia
,
Z.
,
Chen
,
X.
, and
Li
,
X.
,
2024
, “
Design and Snap-Through Behaviors of Shape Memory Polymer Based Multistable Mesh Structure
,”
Proceedings of the 2nd International Conference on Mechanical System Dynamics
,
Beijing, China
,
Sept. 1
, Springer Nature, Singapore, pp.
4469
4481
.
24.
Jalali
,
E.
,
Soltanizadeh
,
H.
,
Chen
,
Y.
,
Xie
,
Y. M.
, and
Sareh
,
P.
,
2022
, “
Selective Hinge Removal Strategy for Architecting Hierarchical Auxetic Metamaterials
,”
Commun. Mater.
,
3
(
1
), p.
97
.
25.
Lin
,
R. J.
,
Xu
,
S.
, and
Liu
,
Z. S.
,
2024
, “
A Visco-Hyperelastic Model for Hydrogels With Different Water Content and Its Finite Element Implementation
,”
Int. J. Solids Struct.
,
293
, p.
112761
.
26.
Xu
,
S.
, and
Liu
,
Z. S.
,
2023
, “
A Deformation-Diffusion-Coupled Constitutive Theory for Hydrogels by Considering the Preparation Conditions
,”
Int. J. Appl. Mech.
,
15
(
8
), p.
2350062
.
27.
Xu
,
S.
, and
Liu
,
Z. S.
,
2020
, “
Coupled Theory for Transient Responses of Conductive Hydrogels With Multi-Stimuli
,”
J. Mech. Phys. Solids
,
143
, p.
104055
.
28.
Yang
,
H.
,
D'Ambrosio
,
N.
,
Liu
,
P. Y.
,
Pasini
,
D.
, and
Ma
,
L.
,
2023
, “
Shape Memory Mechanical Metamaterials
,”
Mater. Today
,
66
, pp.
36
49
.
29.
Jeon
,
S. Y.
,
Shen
,
B. J.
,
Traugutt
,
N. A.
,
Zhu
,
Z. Y.
,
Fang
,
L. C.
,
Yakacki
,
C. M.
,
Nguyen
,
T. D.
, and
Kang
,
S. H.
,
2022
, “
Synergistic Energy Absorption Mechanisms of Architected Liquid Crystal Elastomers
,”
Adv. Mater.
,
34
(
14
), p.
2200272
.
30.
Zhang
,
Y. L.
,
Velay-Lizancos
,
M.
,
Restrepo
,
D.
,
Mankame
,
N. D.
, and
Zavattieri
,
P. D.
,
2021
, “
Architected Material Analogs for Shape Memory Alloys
,”
Matter
,
4
(
6
), pp.
1990
2012
.
31.
Li
,
Y. X.
,
Hu
,
J. Y.
, and
Liu
,
Z. S.
,
2017
, “
A Constitutive Model of Shape Memory Polymers Based on Glass Transition and the Concept of Frozen Strain Release Rate
,”
Int. J. Solids Struct.
,
124
, pp.
252
263
.
32.
Xue
,
Y. H.
,
Lei
,
J. C.
, and
Liu
,
Z. S.
,
2022
, “
A Thermodynamic Constitutive Model for Shape Memory Polymers Based on Phase Transition
,”
Polymer
,
243
, p.
124623
.
33.
Liu
,
R. X.
,
Xu
,
S.
,
Luo
,
X. Y.
, and
Liu
,
Z. S.
,
2020
, “
Theoretical and Numerical Analysis of Mechanical Behaviors of a Metamaterial-Based Shape Memory Polymer Stent
,”
Polymers-Basel
,
12
(
8
), p.
1784
.
34.
Xie
,
Y.
,
Meng
,
Y.
,
Wang
,
W. X.
,
Zhang
,
E.
,
Leng
,
J. S.
, and
Pei
,
Q. B.
,
2018
, “
Bistable and Reconfigurable Photonic Crystals-Electroactive Shape Memory Polymer Nanocomposite for Ink-Free Rewritable Paper
,”
Adv. Funct. Mater.
,
28
(
34
), p.
1802430
.
35.
Chen
,
T.
,
Bilal
,
O. R.
,
Shea
,
K.
, and
Daraio
,
C.
,
2018
, “
Harnessing Bistability for Directional Propulsion of Soft, Untethered Robots
,”
Proc. Natl. Acad. Sci.
,
115
(
22
), pp.
5698
5702
.
36.
Chen
,
T.
, and
Shea
,
K.
,
2018
, “
An Autonomous Programmable Actuator and Shape Reconfigurable Structures Using Bistability and Shape Memory Polymers
,”
3D Print. Addit. Manuf.
,
5
(
2
), pp.
91
101
.
37.
Liu
,
Y. H.
,
Luo
,
K.
,
Wang
,
S.
,
Song
,
X. D.
,
Zhang
,
Z. J.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2022
, “
A Soft and Bistable Gripper With Adjustable Energy Barrier for Fast Capture in Space
,”
Soft Rob.
,
10
(
1
), pp.
77
87
.
38.
Hu
,
N.
,
Li
,
B.
,
Bai
,
R. Y.
,
Xie
,
K.
, and
Chen
,
G. M.
,
2023
, “
A Torsion-Bending Antagonistic Bistable Actuator Enables Untethered Crawling and Swimming of Miniature Robots
,”
Research
,
6
, p.
0116
.
39.
Liang
,
K.
,
Wang
,
Y. G.
,
Luo
,
Y. J.
,
Takezawa
,
A.
,
Zhang
,
X. P.
, and
Kang
,
Z.
,
2023
, “
Programmable and Multistable Metamaterials Made of Precisely Tailored Bistable Cells
,”
Mater. Des.
,
227
, p.
111810
.
40.
Chen
,
T.
, and
Shea
,
K.
,
2021
, “
Computational Design of Multi-Stable, Reconfigurable Surfaces
,”
Mater. Des.
,
205
, p.
109688
.
41.
Tan
,
X. J.
,
Wang
,
L. C.
,
Zhu
,
S. W.
,
Chen
,
S.
,
Wang
,
B.
, and
Kadic
,
M.
,
2022
, “
A General Strategy for Performance Enhancement of Negative Stiffness Mechanical Metamaterials
,”
Eur. J. Mech. A Solid
,
96
, p.
104702
.
42.
Pollalis
,
W.
,
Shah
,
P.
,
Zhang
,
Y. L.
,
Mankame
,
N.
,
Zavattieri
,
P.
, and
Pujol
,
S.
,
2023
, “
Dynamic Response of a Single-Degree-of-Freedom System Containing Phase Transforming Cellular Materials
,”
Eng. Struct.
,
275
, p.
115205
.
43.
Mao
,
J. J.
,
Wang
,
S.
,
Tan
,
W.
, and
Liu
,
M. C.
,
2022
, “
Modular Multistable Metamaterials With Reprogrammable Mechanical Properties
,”
Eng. Struct.
,
272
, p.
114976
.
44.
Lin
,
X.
,
Pan
,
F.
,
Yang
,
K.
,
Guan
,
J.
,
Ding
,
B.
,
Liu
,
Y. Z.
,
Yang
,
K. J.
,
Liu
,
B.
, and
Chen
,
Y. L.
,
2021
, “
A Stair-Building Strategy for Tailoring Mechanical Behavior of Re-Customizable Metamaterials
,”
Adv. Funct. Mater.
,
31
(
37
), p.
2101808
.
45.
Haghpanah
,
B.
,
Ebrahimi
,
H.
,
Mousanezhad
,
D.
,
Hopkins
,
J.
, and
Vaziri
,
A.
,
2016
, “
Programmable Elastic Metamaterials
,”
Adv. Eng. Mater.
,
18
(
4
), pp.
643
649
.
46.
Clausen
,
A.
,
Wang
,
F. W.
,
Jensen
,
J. S.
,
Sigmund
,
O.
, and
Lewis
,
J. A.
,
2015
, “
Topology Optimized Architectures With Programmable Poisson's Ratio Over Large Deformations
,”
Adv. Mater.
,
27
(
37
), pp.
5523
5527
.
47.
Shi
,
J. H.
,
Mofatteh
,
H.
,
Mirabolghasemi
,
A.
,
Desharnais
,
G.
, and
Akbarzadeh
,
A.
,
2021
, “
Programmable Multistable Perforated Shellular
,”
Adv. Mater.
,
33
(
42
), p.
2102423
.
48.
Fu
,
Z.
,
Zhu
,
Z.
, and
Deng
,
Z.
,
2024
, “
Thermally Active Programmable Metamaterials With Holey Tilted Struts
,”
Smart Mater. Struct.
,
33
(
1
), p.
015006
.
49.
Meng
,
Z. Q.
,
Yan
,
H. J.
,
Liu
,
M. C.
,
Qin
,
W. K.
,
Genin
,
G. M.
, and
Chen
,
C. Q.
,
2023
, “
Encoding and Storage of Information in Mechanical Metamaterials
,”
Adv. Sci.
,
10
(
20
), p.
2301581
.
50.
Zhang
,
X.
,
Wang
,
Y.
,
Tian
,
Z. H.
,
Samri
,
M.
,
Moh
,
K.
,
McMeeking
,
R. M.
,
Hensel
,
R.
, and
Arzt
,
E.
,
2022
, “
A Bioinspired Snap-Through Metastructure for Manipulating Micro-Objects
,”
Sci. Adv.
,
8
(
46
), p.
eadd4768
.
You do not currently have access to this content.