Abstract

This study computationally investigates the elastic interaction of two pressurized cylindrical cavities in a 2D hyperelastic medium. Unlike linear elasticity, where interactions are exclusively attractive, nonlinear material models (neo-Hookean, Mooney–Rivlin, Arruda–Boyce) exhibit both attraction and repulsion between the cavities. A critical pressure-shear modulus ratio governs the transition, offering a pathway to manipulate cavity configurations through material and loading parameters. At low ratios, the interactions are always attractive, while at high ratios, both attractive and repulsive regimes exist depending on the separation between the cavities. The effect of the strain-stiffening on these interactions is also analyzed. These insights bridge theoretical and applied mechanics, with implications for soft material design and subsurface engineering.

References

1.
Kothari
,
M.
, and
Cohen
,
T.
,
2020
, “
Effect of Elasticity on Phase Separation in Heterogeneous Systems
,”
J. Mech. Phys. Solids
,
145
, p.
104153
.
2.
Kothari
,
M.
, and
Cohen
,
T.
,
2023
, “
The Crucial Role of Elasticity in Regulating Liquid-Liquid Phase Separation in Cells
,”
Biomech. Model. Mechanobiol.
,
22
(
2
), pp.
645
654
.
3.
Kooi
,
C.
, and
Verruijt
,
A.
,
2001
, “
Interaction of Circular Holes in an Infinite Elastic Medium
,”
Tunnell. Underground Space Technol.
,
16
(
1
), pp.
59
62
.
4.
Barney
,
C.
,
Dougan
,
C.
,
McLeod
,
K.
,
Kazemi-Moridani
,
A.
,
Zheng
,
Y.
,
Ye
,
Z.
,
Tiwari
,
S.
, et al.,
2020
, “
Cavitation in Soft Matter
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
17
), pp.
9157
9165
.
5.
Jeffries
,
J.
,
Wall
,
M.
,
Moore
,
K.
, and
Schwartz
,
A.
,
2011
, “
He Bubble Coarsening by Migration and Coalescence in Annealed Pu–Ga Alloys
,”
J. Nucl. Mater.
,
410
(
1–3
), pp.
84
88
.
6.
Zhang
,
W.
,
Han
,
H.
,
Dai
,
J.
,
Ren
,
C.
,
Wang
,
C.
,
Yan
,
L.
,
Huang
,
H.
, and
Zhu
,
Z.
,
2019
, “
Simulation of Migration and Coalescence of Helium Bubbles in Nickel
,”
J. Nucl. Mater.
,
518
, pp.
48
53
.
7.
Xu
,
K.
,
Mehmani
,
Y.
,
Shang
,
L.
, and
Xiong
,
Q.
,
2019
, “
Gravity-Induced Bubble Ripening in Porous Media and Its Impact on Capillary Trapping Stability
,”
Geophys. Res. Lett.
,
46
(
23
), pp.
13804
13813
.
8.
Jeffery
,
G.
,
1921
, “
IX. Plane Stress and Plane Strain in Bipolar Co-Ordinates
,”
Philos. Trans. R. Soc. Lond. Ser. A
,
221
(
582–593
), pp.
265
293
. doi.org/10.1098/rsta.1921.0009
9.
Howland
,
R.
, and
Knight
,
R.
,
1939
, “
Stress Functions for a Plate Containing Groups of Circular Holes
,”
Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci.
,
238
(
793
), pp.
357
392
. doi.org/10.1098/rsta.1939.0010
10.
Green
,
A.
,
1940
, “
General Bi-Harmonic Analysis for a Plate Containing Circular Holes
,”
Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci.
,
176
(
964
), pp.
121
139
. doi.org/10.1098/rspa.1940.0082
11.
Ardell
,
A.
, and
Nicholson
,
R.
,
1966
, “
On the Modulated Structure of Aged Ni-Al Alloys
,”
Acta Metall.
,
14
(
10
), pp.
1295
1309
.
12.
Ling
,
C.
,
1948
, “
On the Stresses in a Plate Containing Two Circular Holes
,”
J. Appl. Phys.
,
19
(
1
), pp.
77
82
.
13.
Davanas
,
K.
,
1992
, “
Analysis of Elastic Interactions Between Holes
,”
J. Mater. Sci.
,
27
(
6
), pp.
1589
1598
.
14.
Toshihiro
,
I.
, and
Kazyu
,
M.
,
1980
, “
Stress Concentrations in a Plate With Two Unequal Circular Holes
,”
Int. J. Eng. Sci.
,
18
(
8
), pp.
1077
1090
.
15.
Willis
,
J.
, and
Bullough
,
R.
,
1969
, “
The Interaction of Finite Gas Bubbles in a Solid
,”
J. Nucl. Mater.
,
32
(
1
), pp.
76
87
.
16.
Lidiard
,
A.
, and
Nelson
,
R.
,
1968
, “
Gas Bubbles in Solids
,”
Philos. Mag.
,
17
(
146
), pp.
425
429
.
17.
Moschovidis
,
Z.
, and
Mura
,
T.
,
1975
, “
Two-Ellipsoidal Inhomogeneities by the Equivalent Inclusion Method
,”
ASME J. Appl. Mech.
,
42
(
4
), pp.
847
852
.
18.
Chalon
,
F.
, and
Montheillet
,
F.
,
2003
, “
The Interaction of Two Spherical Gas Bubbles in an Infinite Elastic Solid
,”
ASME J. Appl. Mech.
,
70
(
6
), pp.
789
798
.
19.
Eshelby
,
J.
,
1955
, “
The Elastic Interaction of Point Defects
,”
Acta Metall.
,
3
(
5
), pp.
487
490
.
20.
Eshelby
,
J.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci.
,
241
(
1226
), pp.
376
396
. doi.org/10.1098/rspa.1957.0133
21.
Eshelby
,
J.
,
1957
, “
The Elastic Model of Lattice Defects
,”
Annalen der Physik
,
456
(
1–3
), pp.
116
121
.
22.
Hoang
,
S.
, and
Abousleiman
,
Y.
,
2008
, “
Extended Green’s Solution for the Stresses in an Infinite Plate With Two Equal or Unequal Circular Holes
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
031016
.
23.
Rivlin
,
R.
,
1948
, “
Large Elastic Deformations of Isotropic Materials IV. Further Developments of the General Theory
,”
Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci.
,
241
(
835
), pp.
379
397
. doi.org/10.1098/rsta.1948.0024
24.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
25.
Arruda
,
E.
, and
Boyce
,
M.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids.
,
41
(
2
), pp.
389
412
.
26.
Seol
,
D.
,
Hu
,
S.
,
Li
,
Y.
,
Shen
,
J.
,
Oh
,
K.
, and
Chen
,
L.
,
2003
, “
Computer Simulation of Spinodal Decomposition in Constrained Films
,”
Acta Mater.
,
51
(
17
), pp.
5173
5185
.
27.
Binder
,
K.
,
Puri
,
S.
,
Das
,
S.
, and
Horbach
,
J.
,
2010
, “
Phase Separation in Confined Geometries
,”
J. Stat. Phys.
,
138
, pp.
51
84
.
28.
Bohinc
,
K.
,
Kralj-Iglič
,
V.
, and
May
,
S.
,
2003
, “
Interaction Between Two Cylindrical Inclusions in a Symmetric Lipid Bilayer
,”
J. Chem. Phys.
,
119
(
14
), pp.
7435
7444
.
29.
Li
,
J.
,
Kothari
,
M.
,
Chockalingam
,
S.
,
Henzel
,
T.
,
Zhang
,
Q.
,
Li
,
X.
,
Yan
,
J.
, and
Cohen
,
T.
,
2022
, “
Nonlinear Inclusion Theory With Application to the Growth and Morphogenesis of a Confined Body
,”
J. Mech. Phys. Solids.
,
159
, p.
104709
.
30.
Zhang
,
Q.
,
Li
,
J.
,
Nijjer
,
J.
,
Lu
,
H.
,
Kothari
,
M.
,
Alert
,
R.
,
Cohen
,
T.
, and
Yan
,
J.
,
2021
, “
Morphogenesis and Cell Ordering in Confined Bacterial Biofilms
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
31
), p.
e2107107118
.
31.
Kim
,
S.
,
2004
, “
Interaction Behaviours Between Parallel Tunnels in Soft Ground
,”
Tunnelling Underground Space Technol.
,
19
(
4–5
), p.
448
.
32.
Fu
,
J.
,
Yang
,
J.
,
Yan
,
L.
, and
Abbas
,
S.
,
2015
, “
An Analytical Solution for Deforming Twin-Parallel Tunnels in an Elastic Half Plane
,”
Int. J. Numer. Anal. Methods Geomech.
,
39
(
5
), pp.
524
538
.
33.
Zeng
,
G.
,
Wang
,
H.
, and
Jiang
,
M.
,
2023
, “
Analytical Stress and Displacement of Twin Noncircular Tunnels in Elastic Semi-Infinite Ground
,”
Comput. Geotechnics
,
160
, p.
105520
.
34.
Kanner
,
L.
, and
Horgan
,
C.
,
2008
, “
Inhomogeneous Shearing of Strain-Stiffening Rubber-Like Hollow Circular Cylinders
,”
Int. J. Solids Struct.
,
45
(
20
), pp.
5464
5482
.
35.
Systèmes
,
D.
,
2022
, “Simulia 2022, Dassault Systèmes,” Providence, RI. https://www.3ds.com/products/simulia/abaqus
36.
Horgan
,
C.
, and
Saccomandi
,
G.
,
2006
, “
Phenomenological Hyperelastic Strain-Stiffening Constitutive Models for Rubber
,”
Rubber Chem. Technol.
,
79
(
1
), pp.
152
169
.
37.
Storm
,
C.
,
Pastore
,
J.
,
MacKintosh
,
F.
,
Lubensky
,
T.
, and
Janmey
,
P.
,
2005
, “
Nonlinear Elasticity in Biological Gels
,”
Nature
,
435
(
7039
), pp.
191
194
.
38.
Erk
,
K.
,
Henderson
,
K.
, and
Shull
,
K.
,
2010
, “
Strain Stiffening in Synthetic and Biopolymer Networks
,”
Biomacromolecules
,
11
(
5
), pp.
1358
1363
.
39.
Boyce
,
M.
, and
Arruda
,
E.
,
2000
, “
Constitutive Models of Rubber Elasticity: A Review
,”
Rubber Chem. Technol.
,
73
(
3
), pp.
504
523
.
40.
Suchocki
,
C.
, and
Jemioło
,
S.
,
2021
, “
Polyconvex Hyperelastic Modeling of Rubberlike Materials
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
7
), p.
352
.
41.
Lucht
,
P.
,
2015
, “
Bipolar Coordinates and the Two-Cylinder Capacitor
,”
Rimrock Digital Technol.
,
84103
, p.
61
. http://user.xmission.com/
You do not currently have access to this content.