Abstract

Mechanical shock is a common problem that is present in many situations, such as ground motion, blast, explosions, crash, and impact. The development of passive, active, or adaptive control and isolation strategies for shock-induced vibration has experienced recent interest, typically due to the increasing demand in improved isolation requirements for sensitive equipment subjected to harsh environments. This paper presents a review of some of the significant recent works developed in the field, focusing on novel developments that contribute to the shock isolation. The article explores several isolation approaches considering passive, active, and nonlinear systems discussing both theoretical and experimental results. In addition, important outcomes of the work are reviewed. The paper concludes with suggestions for potential developments, applications, and recommendations for future research.

References

1.
Harris
,
C. M.
, and
Crede
,
C. E.
,
1996
,
Shock and Vibration Handbook
,
McGraw-Hill
,
New York
.
2.
Liu
,
Y.
,
Waters
,
T. P.
, and
Brennan
,
M. J.
,
2005
, “
A Comparison of Semi-Active Damping Control Strategies for Vibration Isolation of Harmonic Disturbances
,”
J. Sound Vib.
,
280
(
1–2
), pp.
21
39
.10.1016/j.jsv.2003.11.048
3.
Eshleman
,
R. L.
, and
Rao
,
P.
,
1969
, “
Response of Mechanical Shock Isolation Elements to High Rate Input Loading
,”
Shock Vib. Bull.
,
40
(
5
), pp.
217
234
.https://apps.dtic.mil/dtic/tr/fulltext/u2/723343.pdf
4.
Eshleman
,
R. L.
,
1970
, “
Design of High Performance Shock Isolation Systems
,”
Shock Vib. Bull.
,
41
(
1
), pp.
53
64
.https://apps.dtic.mil/dtic/tr/fulltext/u2/723347.pdf
5.
Parfitt
,
G. G.
, and
Snowdon
,
J. C.
,
1962
, “
Incidence and Prevention of Damage Due to Mechanical Shock
,”
J. Acoust. Soc. Am.
,
34
(
4
), pp.
462
468
.10.1121/1.1918151
6.
Mindlin
,
R. D.
,
1945
, “
Dynamics of Package Cushioning
,”
Bell Syst. J.
,
24
(
7–10
), pp.
353
461
.10.1002/j.1538-7305.1945.tb00892.x
7.
Lou
,
J.
,
Sun
,
J.
,
Tang
,
S.
, and
Li
,
H.
,
2014
, “
Study on the Optimization of the Shock Isolation System Based on the Limiting Performance Analysis
,”
Int. J. Dyn. Control
,
2
(
3
), pp.
415
424
.10.1007/s40435-013-0045-6
8.
Mustin
,
G. S.
,
1968
,
Theory and Practice of Cushion Design
,
No. SVM-2, Shock and Vibration Information Center
,
Washington, DC
.
9.
Kipp
,
W. I.
,
2000
, “
Developments in Testing Products for Distribution
,”
Packag. Technol. Sci.
,
13
(
3
), pp.
89
98
.10.1002/1099-1522(200005)13:3<89::AID-PTS473>3.0.CO;2-4
10.
Carrella
,
A.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Shin
,
K.
,
2008
, “
On the Design of a High-Static-Low-Dynamic Stiffness Isolator Using Linear Mechanical Springs and Magnets
,”
J. Sound Vib.
,
315
(
3
), pp.
712
720
.10.1016/j.jsv.2008.01.046
11.
Balandin
,
D. V.
,
Bolotnik
,
N. N.
, and
Pilkey
,
W. D.
,
2014
,
Optimal Protection From Impact, Shock and Vibration
,
CRC Press
, London.
12.
Balandin
,
D. V.
,
Bolotnik
,
N. N.
, and
Pilkey
,
W. D.
,
1998
, “
Optimal Shock and Vibration Isolation
,”
Shock Vib.
,
5
(
2
), pp.
73
87
.10.1155/1998/197040
13.
Chen
,
W.
, and
Sitaraman
,
S. K.
,
2016
, “
Area-Array of 3-Arc-Fan Compliant Interconnects as Effective Drop-Impact Isolator for Microsystems
,”
J. Microelectromech. Syst.
,
25
(
2
), pp.
337
346
.10.1109/JMEMS.2016.2521732
14.
Chen
,
W.
,
Bhat
,
A.
, and
Sitaraman
,
S. K.
,
2015
, “
Impact Isolation Through the Use of Compliant Interconnects for Microelectronic Packages
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
041005
.10.1115/1.4031680
15.
Goyal
,
S. E.
,
Buratynski
,
E. K.
, and
Elko
,
G. W.
,
2000
, “
Role of Shock Response Spectrum in Electronic Product Suspension Design
,”
Int. J. Microcircuits Electron. Packag.
,
23
(
2
), pp.
182
190
.http://www.imaps.org/journal/2000/q2/goyal.pdf
16.
Son
,
L.
,
Kawachi
,
M.
,
Matsuhisa
,
H.
, and
Utsuno
,
H.
,
2007
, “
Reducing Floor Impact Vibration and Sound Using a Momentum Exchange Impact Damper
,”
J. Syst. Des. Dyn.
,
1
(
1
), pp.
14
26
.10.1299/jsdd.1.14
17.
Hara
,
S.
,
Ito
,
R.
,
Otsuki
,
M.
,
Yamada
,
Y.
,
Kubota
,
T.
,
Hashimoto
,
T.
,
Matsuhisa
,
H.
, and
Yamada
,
K.
,
2011
, “
Momentum-Exchange-Impact-Damper-Based Shock Response Control for Planetary Exploration Spacecraft
,”
J Guid. Control Dyn.
,
34
(
6
), pp.
1828
1838
.10.2514/1.53786
18.
Son
,
L.
,
Bur
,
M.
, and
Rusli
,
M.
,
2018
, “
A New Concept for UAV Landing Gear Shock Vibration Control Using Pre-Straining Spring Momentum Exchange Impact Damper
,”
J. Vib. Control
,
24
(
8
), pp.
1455
1468
.10.1177/1077546316661470
19.
Son
,
L.
,
Bur
,
M.
,
Rusli
,
M.
,
Matsuhisa
,
H.
,
Yamada
,
K.
, and
Utsuno
,
H.
,
2017
, “
Fundamental Study of Momentum Exchange Impact Damper Using Pre-Straining Spring Mechanism
,”
Int. J. Acoust. Vib.
,
22
(
4
), pp.
422
430
.10.20855/ijav.2017.22.4487
20.
Snowdon
,
J. C.
,
1961
, “
Response of Nonlinear Shock Mountings to Transient Foundation Displacements
,”
J. Acoust. Soc. Am.
,
33
(
10
), pp.
1295
1304
.10.1121/1.1908423
21.
Snowdon
,
J. C.
,
1970
, “
Isolation from Mechanical Shock with a Mounting System Having Nonlinear Dual-Phase Damping
,” Pennsylvania State University, University Park Ordnance Research Laboratory, Report No. ADA047837.
22.
Snowdon
,
J. C.
,
1963
, “
Transient Response of Nonlinear Isolation Mountings to Pulselike Displacements
,”
J. Acoust. Soc. Am.
,
35
(
3
), pp.
389
396
.10.1121/1.1918477
23.
Guntur
,
R. R.
, and
Sankar
,
S.
,
1982
, “
Performance of Different Kinds of Dual Phase Damping Shock Mounts
,”
J. Sound Vib.
,
84
(
2
), pp.
253
267
.10.1016/S0022-460X(82)80008-4
24.
Hundal
,
M. S.
,
1981
, “
Response of Shock Isolators With Linear and Quadratic Damping
,”
J. Sound Vib.
,
76
(
2
), pp.
273
281
.10.1016/0022-460X(81)90354-0
25.
Hundal
,
M. S.
,
1982
, “
Passive Pneumatic Shock Isolator: Analysis and Design
,”
J. Sound Vib.
,
84
(
1
), pp.
1
9
.10.1016/0022-460X(82)90428-X
26.
Hundal
,
M. S.
,
1985
, “
Shock Response of a Symmetric Pneumatic Spring to a Velocity Pulse
,”
J. Sound Vib.
,
101
(
1
), pp.
33
40
.10.1016/S0022-460X(85)80036-5
27.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.10.1016/j.jsv.2008.01.014
28.
Alabuzhev
,
P. M.
,
Gritchin
,
A.
,
Kim
,
L.
,
Migirenko
,
G.
,
Chon
,
V.
, and
Stepanov
,
P.
,
1989
,
Vibration Protection and Measuring Systems With Quasi-Zero Stiffness
,
CRC Press
, New York.
29.
Harne
,
R. L.
, and
Kon-Well
,
W.
,
2017
,
Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing
,
Wiley
, Chichester, UK.
30.
Carrella
,
A.
,
Brennan
,
M. J.
,
Kovacic
,
I.
, and
Waters
,
T. P.
,
2009
, “
On the Force Transmissibility of a Vibration Isolator With Quasi-Zero-Stiffness
,”
J. Sound Vib.
,
322
(
4–5
), pp.
707
717
.10.1016/j.jsv.2008.11.034
31.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.10.1016/j.jsv.2006.10.011
32.
Brennan
,
M. J.
,
Kovacic
,
I.
,
Carrella
,
A.
, and
Waters
,
T. P.
,
2008
, “
On the Jump-Up and Jump-Down Frequencies of the Duffing Oscillator
,”
J. Sound Vib.
,
318
(
4–5
), pp.
1250
1261
.10.1016/j.jsv.2008.04.032
33.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Optimization of a Quasi-Zero-Stiffness Isolator
,”
J. Mech. Sci. Technol.
,
21
(
6
), pp.
946
949
.10.1007/BF03027074
34.
Valeev
,
A.
,
Zotov
,
A.
, and
Kharisov
,
S.
,
2015
, “
Designing of Compact Low Frequency Vibration Isolator With Quasi-Zero-Stiffness
,”
J. Low Freq. Noise Vib. Act. Control
,
34
(
4
), pp.
459
473
.10.1260/0263-0923.34.4.459
35.
Liu
,
X. T.
,
Huang
,
X. T.
, and
Hua
,
X. H.
,
2014
, “
Performance of a Zero Stiffness Isolator Under Shock Excitations
,”
J. Vib. Control
,
20
(
14
), pp.
2090
2099
.10.1177/1077546312473767
36.
Tang
,
B.
, and
Brennan
,
M. J.
,
2014
, “
On the Shock Performance of a Nonlinear Vibration Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
81
, pp.
207
214
.10.1016/j.ijmecsci.2014.02.019
37.
Ledezma-Ramirez
,
D. F.
,
Ferguson
,
N. S.
,
Brennan
,
M. J.
, and
Tang
,
B.
,
2015
, “
An Experimental Nonlinear Low Dynamic Stiffness Device for Shock Isolation
,”
J. Sound Vib.
,
347
, pp.
1
13
.10.1016/j.jsv.2015.02.006
38.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031009
.10.1115/1.4026888
39.
Huang
,
X.
,
Chen
,
Y.
,
Hua
,
H.
,
Liu
,
X.
, and
Zhang
,
Z.
,
2015
, “
Shock Isolation Performance of a Nonlinear Isolator Using Euler Buckled Beam as Negative Stiffness Corrector: Theoretical and Experimental Study
,”
J. Sound Vib.
,
345
, pp.
178
196
.10.1016/j.jsv.2015.02.001
40.
Yan
,
L.
,
Xuan
,
S.
, and
Gong
,
X.
,
2018
, “
Shock Isolation Performance of a Geometric Anti-Spring Isolator
,”
J. Sound Vib.
,
413
, pp.
120
143
.10.1016/j.jsv.2017.10.024
41.
Debeau
,
D. A.
,
Seepersad
,
C. C.
, and
Haberman
,
M. R.
,
2018
, “
Impact Behavior of Negative Stiffness Honeycomb Materials
,”
J. Mater. Res.
,
33
(
3
), pp.
290
299
.10.1557/jmr.2018.7
42.
Restrepo
,
D.
,
Mankame
,
N. D.
, and
Zavattieri
,
P. D.
,
2015
, “
Phase Transforming Cellular Materials
,”
Extrem. Mech. Lett.
,
4
, pp.
52
60
.10.1016/j.eml.2015.08.001
43.
Rafsanjani
,
A.
,
Abdolhamid
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
.10.1002/adma.201502809
44.
Haghpanah
,
B.
,
Salari-Sharif
,
L.
,
Pourrajab
,
P.
,
Hopkins
,
J.
, and
Valdevit
,
L.
,
2016
, “
Multistable Shape-Reconfigurable Architected Materials
,”
Adv. Mater.
,
28
(
36
), pp.
7915
7920
.10.1002/adma.201601650
45.
Harne
,
R.
,
Zhen Wu
,
L.
, and
Wang
,
K. W.
,
2016
, “
Designing and Harnessing the Metastable States of a Modular Metastructure for Programmable Mechanical Properties Adaptation
,”
ASME J. Mech. Des.
,
138
(
2
), p.
021402
.10.1115/1.4032093
46.
Trishan
,
H.
,
Kim
,
A. M.
,
Alderson
,
A.
, and
Scarpa
,
F.
,
2016
, “
Double-Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson's Ratio Properties
,”
Adv. Mater.
,
28
(
46
), pp.
10323
10332
.10.1002/adma.201603959
47.
Guell
,
I. A.
,
Alfonso
,
R. F.
,
McKnight
,
G.
, and
Valdevit
,
L.
,
2017
, “
Optimal Design of a Cellular Material Encompassing Negative Stiffness Elements for Unique Combinations of Stiffness and Elastic Hysteresis
,”
Mater. Des.
,
135
, pp.
37
50
.10.1016/j.matdes.2017.09.001
48.
Frenzel
,
T.
,
Findeisen
,
C.
,
Kadic
,
M.
,
Gumbsch
,
P.
, and
Wegener
,
M.
,
2016
, “
Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers
,”
Adv. Mater.
,
28
(
28
), pp.
5865
5870
.10.1002/adma.201600610
49.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
.10.1002/adma.201501708
50.
Kaikai
,
C.
,
Yuan
,
C.
,
Wu
,
J.
,
Qi
,
H. J.
, and
Meaud
,
J.
,
2017
, “
Three-Dimensional-Printed Multistable Mechanical Metamaterials With a Deterministic Deformation Sequence
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011004
.10.1115/1.4034706
51.
Correa
,
D. M.
,
Seepersad
,
C. C.
, and
Haberman
,
M. R.
,
2015
, “
Mechanical Design of Negative Stiffness Honeycomb Materials
,”
Integr. Mater. Manuf. Innovation
,
4
(
1
), pp.
165
175
.10.1186/s40192-015-0038-8
52.
Klatt
,
T.
,
Haberman
,
M.
, and
Seepersad
,
C. C.
,
2013
, “
Selective Laser Sintering of Negative Stiffness Mesostructures for Recoverable, Nearly-Ideal Shock Isolation
,”
24th International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
, Austin, TX, Aug. 12–14, pp.
1010
1022
.https://www.researchgate.net/publication/289031968_Selective_laser_sintering_of_negative_stiffness_mesostructures_for_recoverable_nearly-ideal_shock_isolation
53.
Klatt
,
T.
, and
Haberman
,
M. R.
,
2013
, “
A Nonlinear Negative Stiffness Metamaterial Unit Cell and Small-on-Large Multiscale Material Model
,”
J. Appl. Phys.
,
114
(
3
), p.
033503
.10.1063/1.4813233
54.
Goldsberry
,
B. M.
, and
Haberman
,
M. R.
,
2018
, “
Negative Stiffness Honeycombs as Tunable Elastic Metamaterials
,”
J. Appl. Phys.
,
123
(
9
), p.
091711
.10.1063/1.5011400
55.
Ma
,
Y.
,
He
,
M.
,
Shen
,
W.
, and
Ren
,
G.
,
2015
, “
A Planar Shock Isolation System With High-Static-Low-Dynamic-Stiffness Characteristic Based on Cables
,”
J. Sound Vib.
,
358
, pp.
267
284
.10.1016/j.jsv.2015.08.011
56.
Pasala
,
D. T. R.
,
Sarlis
,
A. A.
,
Reinhorn
,
A. M.
,
Nagarajaiah
,
S.
,
Constantinou
,
M. C.
, and
Taylor
,
D.
,
2015
, “
Apparent Weakening in SDOF Yielding Structures Using a Negative Stiffness Device: Experimental and Analytical Study
,”
ASCE J. Struct. Eng.
,
141
(
4
), p.
04014130
.10.1061/(ASCE)ST.1943-541X.0001077
57.
Sarlis
,
A. A.
,
Pasala
,
D. T. R.
,
Constantinou
,
M. C.
,
Reinhorn
,
A. M.
,
Nagarajaiah
,
S.
, and
Taylor
,
D. P.
,
2013
, “
Negative Stiffness Device for Seismic Protection of Structures
,”
ASCE J. Struct. Eng.
,
139
(
7
), pp.
1124
1133
.10.1061/(ASCE)ST.1943-541X.0000616
58.
Pasala
,
D. T. R.
,
Sarlis
,
A. A.
,
Reinhorn
,
A. M.
,
Nagarajaiah
,
S.
,
Constantinou
,
M. C.
, and
Taylor
,
D.
,
2014
, “
Simulated Bilinear-Elastic Behavior in a SDOF Elastic Structure Using Negative Stiffness Device: Experimental and Analytical Study
,”
ASCE J. Struct. Eng.
,
140
(
2
), p.
04013049
.10.1061/(ASCE)ST.1943-541X.0000830
59.
Sun
,
T.
,
Lai
,
Z.
,
Nagarajaiah
,
S.
, and
Li
,
H. N.
,
2017
, “
Negative Stiffness Device for Seismic Protection of Smart Base Isolated Benchmark Building
,”
Struct. Control Health Monit.
,
24
(
11
), p.
e1968
.10.1002/stc.1968
60.
Song
,
B.
, and
Nelson
,
K.
,
2015
, “
Dynamic Characterization of Frequency Response of Shock Mitigation of a Polymethylene Diisocyanate (PMDI) Based Rigid Polyurethane Foam
,”
Lat. Am. J. Solids Struct.
,
12
(
9
), pp.
1790
1806
.10.1590/1679-78251585
61.
Sanborn
,
B.
,
Song
,
B.
,
Nishida
,
E.
, and
Knight
,
M.
,
2017
, “
Experimental Evaluation of Low-Pass Shock Isolation Performance of Elastomers Using Frequency-Based Kolsky Bar Analyses
,”
Lat. Am. J. Solids Struct.
,
14
(
3
), pp.
560
574
.10.1590/1679-78253268
62.
Mercer
,
C. A.
, and
Rees
,
P. L.
,
1971
, “
An Optimum Shock Isolator
,”
J. Sound Vib.
,
18
(
4
), pp.
511
520
.10.1016/0022-460X(71)90102-7
63.
Ferri
,
A. A.
,
1995
, “
Friction Damping and Isolation Systems
,”
ASME J. Vib. Acoust.
,
117
(
B
), pp.
196
206
.10.1115/1.2838663
64.
Shahid
,
E.
, and
Ferri
,
A.
,
2012
, “
Passive, Transitioning Mounts for Simultaneous Shock and Vibration Isolation
,”
ASME
Paper No. DETC2012-71009.10.1115/DETC2012-71009
65.
Ismail
,
M. I.
, and
Ferguson
,
N. S.
,
2017
, “
Passive Shock Isolation Utilising Dry Friction
,”
Shock Vib.
,
2017
, p.
7313809
.10.1155/2017/7313809
66.
Wang
,
H. X.
,
Gong
,
X. S.
,
Pan
,
F.
, and
Dang
,
X. J.
,
2015
, “
Experimental Investigations on the Dynamic Behaviour of O-Type Wire-Cable Vibration Isolators
,”
Shock Vib.
,
2015
, p.
869325
.10.1155/2015/869325
67.
Balaji
,
P. S.
,
Moussa
,
L.
,
Rahman
,
M. E.
, and
Vuia
,
L. T.
,
2015
, “
Experimental Investigation on the Hysteresis Behavior of the Wire Rope Isolators
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1527
1536
.10.1007/s12206-015-0325-5
68.
Balaji
,
P. S.
,
Rahman
,
M. E.
,
Leblouba
,
M.
, and
Lau
,
H. H.
,
2015
, “
Wire Rope Isolators for Vibration Isolation of Equipment and Structures—A Review
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
78
(
1
), p.
12001
.10.1088/1757-899X/78/1/012001
69.
Demetriades
,
G. F.
,
Constantinou
,
M. C.
, and
Reinhorn
,
A. M.
,
1993
, “
Study of Wire Rope Systems for Seismic Protection of Equipment in Buildings
,”
Eng. Struct.
,
15
(
5
), pp.
321
334
.10.1016/0141-0296(93)90036-4
70.
Vaiana
,
N.
,
Spizzuoco
,
M.
, and
Serino
,
G.
,
2017
, “
Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators
,”
19th International Conference on Earthquake and Structural Engineering
, London, May 25–26.https://waset.org/Publications/influence-of-displacement-amplitude-and-vertical-load-on-the-horizontal-dynamic-and-static-behavior-of-helical-wire-rope-isolators/10006425
71.
Guzman-Nieto
,
M.
,
Tapia-González
,
P. E.
, and
Ledezma-Ramírez
,
D. F.
,
2015
, “
Low Frequency Experimental Analysis of Dry Friction Damping in Cable Isolators
,”
J. Low Freq. Noise Vib. Act. Control
,
34
(
4
), pp.
513
24
.10.1260/0263-0923.34.4.513
72.
Tapia-González
,
P. E.
, and
Ledezma-Ramírez
,
D. F.
,
2017
, “
Experimental Characterisation of Dry Friction Isolators for Shock and Vibration
,”
J. Low Freq. Noise Vib. Act. Control
,
36
(
1
), pp.
83
95
.10.1177/0263092317693509
73.
Youn
,
S. H.
,
Jang
,
Y. S.
, and
Han
,
J. H.
,
2008
, “
Pyroshock Isolation Performance Test Using Wiremesh Isolators
,”
J. Korean Soc. Aeronaut. Space Sci.
,
36
(
9
), pp.
923
928
.10.5139/JKSAS.2008.36.9.923
74.
Youn
,
S. H.
,
Jang
,
Y. S.
, and
Han
,
J. H.
,
2011
, “
Development of a Three-Axis Hybrid Mesh Isolator Using the Pseudoelasticity of a Shape Memory Alloy
,”
Smart Mater. Struct.
,
20
(
7
), p.
075017
.10.1088/0964-1726/20/7/075017
75.
Chen
,
Y.
,
Wang
,
Y.
, and
Hua
,
H. X.
,
2013
, “
Performance of an Elastic Polymer Foam Cushion in Attenuating Responses of Shipboard Standing-Men to Ship Vertical Shock
,”
J. Vib. Control
,
19
(
13
), pp.
1999
2012
.10.1177/1077546312449642
76.
Zhang
,
L. J.
,
Zhu
,
C. M.
,
Shi
,
X.
, and
Zhang
,
P.
,
2010
, “
A Novel Shock Isolator for Heavy Structure Installation
,”
Proc. Inst. Mech. Eng. Part C
,
224
(
2
), pp.
283
292
.10.1243/09544062JMES1693
77.
Lu
,
L. Y.
,
Lin
,
C. C.
, and
Lin
,
G. L.
,
2013
, “
Experimental Evaluation of Supplemental Viscous Damping for a Sliding Isolation System Under Pulse-Like Base Excitations
,”
J. Sound Vib.
,
332
(
8
), pp.
1982
1999
.10.1016/j.jsv.2012.12.008
78.
Stein
,
G. J.
, and
Mucka
,
P.
,
2011
, “
Study of Simultaneous Shock and Vibration Control by a Fore-and-Aft Suspension System of a Driver's Seat
,”
Int. J. Ind. Ergon.
,
41
(
5
), pp.
520
529
.10.1016/j.ergon.2011.03.003
79.
Ma
,
X. Q.
,
Rakheja
,
S.
, and
Su
,
C. Y.
,
2008
, “
Damping Requirement of a Suspension Seat Subject to Low Frequency Vehicle Vibration and Shock
,”
Int. J. Veh. Des.
,
47
(
1/2/3/4
), pp.
133
156
.10.1504/IJVD.2008.020884
80.
Narkhede
,
D. I.
, and
Sinha
,
R.
,
2012
, “
Shock Vibration Control of Structures Using Fluid Viscous Dampers
,”
15th WCEE (World Conference on Earthquake Engineering)
, Lisbon, Portugal, Sept. 24–28.http://www.iitk.ac.in/nicee/wcee/article/WCEE2012_2922.pdf
81.
Narkhede
,
D. I.
, and
Sinha
,
R.
,
2014
, “
Behavior of Nonlinear Fluid Viscous Dampers for Control of Shock Vibrations
,”
J. Sound Vib.
,
333
(
1
), pp.
80
98
.10.1016/j.jsv.2013.08.041
82.
Silveira
,
M.
,
Pontes
,
B. R.
, Jr.
, and
Balthazar
,
J. M.
,
2014
, “
Use of Nonlinear Asymmetrical Shock Absorber to Improve Comfort on Passenger Vehicles
,”
J. Sound Vib.
,
333
(
7
), pp.
2114
2129
.10.1016/j.jsv.2013.12.001
83.
Vakakis
,
A. F.
,
2003
, “
Shock Isolation Through the Use of Nonlinear Energy Sinks
,”
Modal Anal.
,
9
(
1–2
), pp.
79
93
.10.1177/107754603030742
84.
Lee
,
Y. S.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
,
Nucera
,
F.
,
Tsakirtzis
,
S.
, and
Panagopoulos
,
P. N.
,
2008
, “
Passive Non-Linear Targeted Energy Transfer and Its Applications to Vibration Absorption: A Review
,”
Proc. Inst. Mech. Eng., Part K
,
222
(
2
), pp.
77
134
.10.1243/14644193JMBD118
85.
Smith
,
E.
, and
Ferri
,
A.
,
2015
, “
Shock Isolation in Finite-Length Dimer Chains With Linear, Cubic, and Hertzian Spring Interactions
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011012
.10.1115/1.4031741
86.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2006
, “
Energy Trapping and Shock Disintegration in a Composite Granular Medium
,”
Phys. Rev. Lett.
,
96
(
5
), p.
058002
.10.1103/PhysRevLett.96.058002
87.
Jayaprakash
,
K. R.
,
Vakakis
,
A. F.
, and
Starosvetsky
,
Y.
,
2013
, “
Strongly Nonlinear Traveling Waves in Granular Dimer Chains
,”
Mech. Syst. Signal Process.
,
39
(
1–2
), pp.
91
107
.10.1016/j.ymssp.2012.04.018
88.
Jayaprakash
,
K. R.
,
Starosvetsky
,
Y.
,
Vakakis
,
A. F.
, and
Gendelman
,
O. V.
,
2013
, “
Nonlinear Resonances Leading to Strong Pulse Attenuation in Granular Dimer Chains
,”
J. Nonlinear Sci.
,
23
(
3
), pp.
363
392
.10.1007/s00332-012-9155-0
89.
Potekin
,
R.
,
Jayaprakash
,
K. R.
,
McFarland
,
D. M.
,
Remick
,
K.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2013
, “
Experimental Study of Strongly Nonlinear Resonances and Anti-Resonances in Granular Dimer Chains
,”
Exp. Mech.
,
53
(
5
), pp.
861
870
.10.1007/s11340-012-9673-6
90.
Smith
,
E.
, and
Ferri
,
A.
,
2015
, “
Shock and Vibration Isolation Using Internally Rotating Masses
,”
ASME
Paper No. DETC2015-47758.10.1115/DETC2015-47758
91.
Blandino
,
T.
, and
Ferri
,
A.
,
2018
, “
Shock and Vibration Isolation Using Dynamic Mounts With Internal Damping
,”
ASME
Paper No. DETC2018-86214.10.1115/DETC2018-86214
92.
Alkhatib
,
R.
, and
Golnaraghi
,
M. F.
,
2003
, “
Active Structural Vibration Control: A Review
,”
Shock Vib. Dig.
,
35
(
5
), pp.
367
383
.10.1177/05831024030355002
93.
Tokhi
,
M. O.
, and
Veres
,
S.
,
2002
, Active Sound and Vibration Control: Theory and Applications, The Institution of Electrical Engineers, London.
94.
Balandin
,
D. V.
,
Bolotnik
,
N. N.
, and
Pilkey
,
W. D.
,
2005
, “
Pre-Acting Control for Shock and Impact Isolation Systems
,”
Shock Vib.
,
12
(
1
), pp.
49
65
.10.1155/2005/578381
95.
Yang
,
G.
,
Spencer
,
B. F.
, and
Leban
,
F.
,
2002
, “
Shock Vibration Control Using ‘Smart’ Damping Devices
,”
Sixth International Conference on Motion and Vibration Control
, Tokyo, Japan, pp.
722
727
.
96.
Mcmanus
,
S. J.
,
St. Clair
,
K. A.
,
Boileau
,
P. É.
,
Boutin
,
J.
, and
Rakheja
,
S.
,
2002
, “
Evaluation of Vibration and Shock Attenuation Performance of a Suspension Seat With a Semi-Active Magnetorheological Fluid Damper
,”
J. Sound Vib.
,
253
(
1
), pp.
313
327
.10.1006/jsvi.2001.4262
97.
Sapiński
,
B.
, and
Rosół
,
M.
,
2007
, “
MR Damper Performance for Shock Isolation
,”
J. Theor. Appl. Mech.
,
45
(
1
), pp.
133
145
.http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BWM2-0065-0051
98.
Waters
,
T. P.
,
Hyun
,
Y.
, and
Brennan
,
M. J.
,
2009
, “
The Effect of Dual-Rate Suspension Damping on Vehicle Response to Transient Road Inputs
,”
ASME J. Vib. Acoust.
,
131
(
1
), p.
011004
.10.1115/1.2980370
99.
Choi
,
Y. T.
, and
Wereley
,
N. M.
,
2008
, “
Shock Isolation Systems Using Magnetorheological Dampers
,”
ASME J. Vib. Acoust.
,
130
(
2
), p.
024503
.10.1115/1.2775517
100.
Wereley
,
N. M.
,
Hiemenz
,
G. J.
,
Choi
,
Y. T.
,
Wang
,
G.
, and
Chen
,
P. C. H.
,
2010
, “
Adaptive Energy Absorption System for a Vehicle Seat
,” U.S. Patent No. 7822522B2.
101.
Ledezma-Ramirez
,
D. F.
,
Ferguson
,
N.
, and
Brennan
,
M.
,
2010
, “
Shock Performance of Different Semiactive Damping Strategies
,”
J. Appl. Res. Technol.
,
8
(
2
), pp.
249
259
.https://eprints.soton.ac.uk/164353/
102.
Kemmetmuller
,
W.
,
Holzmann
,
K.
,
Kugi
,
A.
, and
Stork
,
M.
,
2013
, “
Electrorheological Semiactive Shock Isolation Platform for Naval Applications
,”
IEEE-ASME Trans Mechatronics
,
18
(
5
), pp.
1437
1447
.10.1109/TMECH.2012.2203456
103.
Wereley
,
N. M.
,
Choi
,
Y. T.
, and
Singh
,
H. J.
,
2011
, “
Adaptive Energy Absorbers for Drop-Induced Shock Mitigation
,”
J. Intel Mat. Syst. Str.
,
25
(
6
), pp.
515
519
.10.1177/1045389X10393767
104.
Singh
,
H. J.
, and
Wereley
,
N. M.
,
2013
, “
Adaptive Magnetorheological Shock Isolation Mounts for Drop-Induced Impacts
,”
Smart Mater. Struct.
,
22
(
12
), p.
122001
.10.1088/0964-1726/22/12/122001
105.
Mao
,
M.
,
Hu
,
W.
,
Choi
,
Y. T.
,
Wereley
,
N. M.
,
Browne
,
A. L.
, and
Ulicny
,
J.
,
2014
, “
Experimental Validation of a Magnetorheological Energy Absorber Design Analysis
,”
J Intel Mat Syst Str
,
25
(
3
), pp.
352
363
.10.1177/1045389X13494934
106.
Singh
,
H. J.
,
Hu
,
W.
,
Wereley
,
N. M.
, and
Glass
,
W.
,
2014
, “
Experimental Validation of a Magnetorheological Energy Absorber Design Optimized for Shock and Impact Loads
,”
Smart Mater. Struct.
,
23
(
12
), p.
125033
.10.1088/0964-1726/23/12/125033
107.
Bai
,
X. X.
,
Wereley
,
N. M.
, and
Wang
,
D. H.
,
2017
, “
Control and Analysis of a Magnetorheological Energy Absorber for Both Shock and Vibration
,”
Int. J. Acoust. Vib.
,
22
(
1
), pp.
104
110
.10.20855/ijav.2017.22.1456
108.
Bai
,
X. X.
,
Hu
,
W.
, and
Wereley
,
N. M.
,
2013
, “
Magnetorheological Damper Utilizing an Inner Bypass for Ground Vehicle Suspensions
,”
IEEE Trans. Magn.
,
49
(
7
), pp.
3422
3425
.10.1109/TMAG.2013.2241402
109.
Son
,
L.
,
Hara
,
S.
,
Yamada
,
K.
, and
Matsuhisa
,
H.
,
2010
, “
Experiment of Shock Vibration Control Using Active Momentum Exchange Impact Damper
,”
J. Vib. Control
,
16
(
1
), pp.
49
64
.10.1177/1077546309102675
110.
Krishna
,
Y.
,
Sarma
,
B. S.
, and
Shrinivasa
,
U.
,
2003
, “
Shock Isolation Using Magnetostrictive Actuator
,”
Proc. SPIE
,
5062
, pp.
270
277
.10.1117/12.514763
111.
Ledezma-Ramirez
,
D. F.
,
Ferguson
,
N. S.
, and
Brennan
,
M. J.
,
2011
, “
Shock Isolation Using an Isolator With Switchable Stiffness
,”
J. Sound Vib.
,
330
(
5
), pp.
868
882
.10.1016/j.jsv.2010.09.016
112.
Ledezma-Ramirez
,
D. F.
,
Ferguson
,
N.
, and
Salas Zamarripa
,
A.
,
2014
, “
Mathematical Modeling of a Transient Vibration Control Strategy Using a Switchable Mass Stiffness Compound System
,”
Shock Vib.
,
2014
, p.
565181
.10.1155/2014/565181
113.
Ledezma-Ramirez
,
D. F.
,
Ferguson
,
N. S.
, and
Brennan
,
M. J.
,
2012
, “
An Experimental Switchable Stiffness Device for Shock Isolation
,”
J. Sound Vib.
,
331
(
23
), pp.
4987
5001
.10.1016/j.jsv.2012.06.010
114.
Kavlicoglu
,
B.
,
Wallis
,
B.
,
Sahin
,
H.
, and
Liu
,
Y.
,
2011
, “
Magnetorheological Elastomer Mount for Shock and Vibration Isolation
,”
Proc. SPIE
,
7977
, pp.
1
7
.10.1117/12.881870
You do not currently have access to this content.