Abstract

The major aim of this study is to provide a broad review of the fundamental ideas, progress, and utilization of triboelectric nanogenerators (TENGs). The modes and operations of numerous triboelectric nanogenerator configurations along with applications and materials are also discussed. Triboelectric nanogenerators, a ground-breaking power production technology, were unveiled in 2012 and classified as one of the most effective generators to convert unused mechanical energy into electrical energy to run a wide range of devices. Triboelectric nanogenerators have made significant progress since the creation of this novel power-generation technology. The operating principles of various modes, such as freestanding triboelectric-layer, single-electrode, lateral sliding, and vertical contact-separation have also been carefully investigated in order to give readers a deeper understanding of the technology. The key applications of TENGs, such as high voltage power supply, blue energy, self-power sensors, and micro/nano-energy, are also described in this work along with concepts for further research. As a result, triboelectric nanogenerators are very important and attractive technology with advantages of low cost, straightforward construction, simple fabrication, high efficiency, and relatively high output performance. Wide range of material choice allows researchers to use the technology in many configurations with multiple applications. Numerous scientific modeling and analysis are also reviewed for a more solid understanding of this revolutionary and unique technology.

References

1.
Carlucci
,
A. P.
,
2019
, “
Introductory Chapter: The Challenges of Future Internal Combustion Engines
,” The Future of Internal Combustion Engines, IntechOpen, London, UK.10.5772/intechopen.83755
2.
Wang
,
Y.
,
Yang
,
Y.
, and
Wang
,
Z. L.
,
2017
, “
Triboelectric Nanogenerators as Flexible Power Sources
,”
NPJ Flex Electron.
,
1
(
1
), pp.
1
10
.10.1038/s41528-017-0007-8
3.
Speranza
,
R.
,
Zaccagnini
,
P.
,
Sacco
,
A.
, and
Lamberti
,
A.
,
2022
, “
High-Voltage Energy Harvesting and Storage System for Internet of Things Indoor Application
,”
Sol. RRL
,
6
(
9
), p.
2200245
.10.1002/solr.202200245
4.
Kulkarni
,
A. A.
,
Savekar
,
V. A.
,
Bhat
,
T. S.
, and
Patil
,
P. S.
,
2022
, “
Recent Advances in Metal Pyrophosphates for Electrochemical Supercapacitors: A Review
,”
J. Energy Storage
,
52
(Part B), p.
104986
.10.1016/j.est.2022.104986
5.
Chen
,
G.
,
Li
,
Y.
,
Bick
,
M.
, and
Chen
,
J.
,
2020
, “
Smart Textiles for Electricity Generation
,”
Chem. Rev.
,
120
(
8
), pp.
3668
3720
.10.1021/acs.chemrev.9b00821
6.
Zhang
,
N.
,
Huang
,
F.
,
Zhao
,
S.
,
Lv
,
X.
,
Zhou
,
Y.
,
Xiang
,
S.
,
Xu
,
S.
,
Li
,
Y.
,
Chen
,
G.
,
Tao
,
C.
,
Nie
,
Y.
,
Chen
,
J.
, and
Fan
,
X.
,
2020
, “
Photo-Rechargeable Fabrics as Sustainable and Robust Power Sources for Wearable Bioelectronics
,”
Matter
,
2
(
5
), pp.
1260
1269
.10.1016/j.matt.2020.01.022
7.
Chen
,
J.
,
Huang
,
Y.
,
Zhang
,
N.
,
Zou
,
H.
,
Liu
,
R.
,
Tao
,
C.
,
Fan
,
X.
, and
Wang
,
Z. L.
,
2016
, “
Micro-Cable Structured Textile for Simultaneously Harvesting Solar and Mechanical Energy
,”
Nat Energy
,
1
(
10
), p.
16138
.10.1038/nenergy.2016.138
8.
Jia
,
F.
,
Xiao
,
X.
,
Nashalian
,
A.
,
Shen
,
S.
,
Yang
,
L.
,
Han
,
Z.
,
Qu
,
H.
,
Wang
,
T.
,
Ye
,
Z.
,
Zhu
,
Z.
,
Huang
,
L.
,
Wang
,
Y.
,
Tang
,
J.
, and
Chen
,
J.
,
2022
, “
Advances in Graphene Oxide Membranes for Water Treatment
,”
Nano Res.
,
15
(
7
), pp.
6636
6654
.10.1007/s12274-022-4273-y
9.
Schulze
,
C.
,
Blume
,
S.
,
Siemon
,
L.
,
Herrmann
,
C.
, and
Thiede
,
S.
,
2019
, “
Towards Energy Flexible and Energy Self-Sufficient Manufacturing Systems
,”
Procedia CIRP
,
81
, pp.
683
688
.10.1016/j.procir.2019.03.176
10.
Ejehi
,
F.
,
Shooshtari
,
L.
,
Mohammadpour
,
R.
,
Asadian
,
E.
, and
Sasanpour
,
P.
,
2022
, “
Self-Powered Ultraviolet/Visible Photodetector Based on Graphene-Oxide Via Triboelectric Nanogenerators Performing by Finger Tapping
,”
Nanotechnology
,
33
(
47
), p.
475205
.10.1088/1361-6528/ac8a52
11.
Rosati
,
A.
,
Facci
,
A. L.
, and
Ubertini
,
S.
,
2022
, “
Techno-Economic Analysis of Battery Electricity Storage Towards Self-Sufficient Buildings
,”
Energy Convers. Manag.
,
256
, p.
115313
.10.1016/j.enconman.2022.115313
12.
Gu
,
L.
,
Liu
,
J.
,
Cui
,
N.
,
Xu
,
Q.
,
Du
,
T.
,
Zhang
,
L.
,
Wang
,
Z.
,
Long
,
C.
, and
Qin
,
Y.
,
2020
, “
Enhancing the Current Density of a Piezoelectric Nanogenerator Using a Three-Dimensional Intercalation Electrode
,”
Nat. Commun.
,
11
(
1
), p.
1030
.10.1038/s41467-020-14846-4
13.
Xu
,
Q.
,
Wen
,
J.
, and
Qin
,
Y.
,
2021
, “
Development and Outlook of High Output Piezoelectric Nanogenerators
,”
Nano Energy
,
86
, p.
106080
.10.1016/j.nanoen.2021.106080
14.
Moradi-Dastjerdi
,
R.
,
Behdinan
,
K.
,
Safaei
,
B.
, and
Qin
,
Z.
,
2020
, “
Buckling Behavior of Porous CNT-Reinforced Plates İntegrated Between Active Piezoelectric Layers
,”
Eng. Struct.
,
222
, p.
111141
.10.1016/j.engstruct.2020.111141
15.
Moradi-Dastjerdi
,
R.
,
Behdinan
,
K.
,
Safaei
,
B.
, and
Qin
,
Z.
,
2020
, “
Static Performance of Agglomerated CNT-Reinforced Porous Plates Bonded With Piezoceramic Faces
,”
Int. J. Mech. Sci.
,
188
, p.
105966
.10.1016/j.ijmecsci.2020.105966
16.
Liu
,
Y.
,
Qin
,
Z.
, and
Chu
,
F.
,
2021
, “
Nonlinear Forced Vibrations of Functionally Graded Piezoelectric Cylindrical Shells Under Electric-Thermo-Mechanical Loads
,”
Int. J. Mech. Sci.
,
201
, p.
106474
.10.1016/j.ijmecsci.2021.106474
17.
Moradi-Dastjerdi
,
R.
, and
Behdinan
,
K.
,
2021
, “
Dynamic Performance of Piezoelectric Energy Harvesters With a Multifunctional Nanocomposite Substrate
,”
Appl. Energy
,
293
, p.
116947
.10.1016/j.apenergy.2021.116947
18.
Moradi-Dastjerdi
,
R.
, and
Behdinan
,
K.
,
2021
, “
Free Vibration Response of Smart Sandwich Plates With Porous CNT-Reinforced and Piezoelectric Layers
,”
Appl. Math. Model.
,
96
, pp.
66
79
.10.1016/j.apm.2021.03.013
19.
Kang
,
Z.
,
Mo
,
J.
,
Yang
,
G.
,
Li
,
Y.
,
Zhang
,
F.-Y.
,
Retterer
,
S. T.
, et al.,
2017
, “
Investigation of Novel Thin LGDLs for High-Efficiency Hydrogen/Oxygen Generation and Energy Storage
,”
AIAA
Paper No. 2017-4873.10.2514/6.2017-4873
20.
Yin
,
Y.-C.
,
Yu
,
Z.-L.
,
Ma
,
Z.-Y.
,
Zhang
,
T.-W.
,
Lu
,
Y.-Y.
,
Ma
,
T.
,
Zhou
,
F.
,
Yao
,
H.-B.
, and
Yu
,
S.-H.
,
2019
, “
Bio-Inspired Low-Tortuosity Carbon Host for High-Performance Lithium-Metal Anode
,”
Natl. Sci. Rev.
,
6
(
2
), pp.
247
256
.10.1093/nsr/nwy148
21.
Arumugam
,
A. B.
,
Selvaraj
,
R.
,
Subramani
,
M.
, and
Vemuluri
,
R. B.
,
2022
, “
Damping and İnstability Characteristics of Uniform and Non-Uniform Composite Multifunctional Semi-Active Sandwich Structures Under Rotating Environment
,”
Compos. Sci. Technol.
,
219
, p.
109203
.10.1016/j.compscitech.2021.109203
22.
Mahesh
,
V.
,
2022
, “
Active Control of Nonlinear Coupled Transient Vibrations of Multifunctional Sandwich Plates With Agglomerated FG-CNTs Core/Magneto-Electro-Elastic Facesheets
,”
Thin-Walled Struct.
,
179
, p.
109547
.10.1016/j.tws.2022.109547
23.
Zhang
,
L.
,
Zhang
,
F.
,
Qin
,
Z.
,
Han
,
Q.
,
Wang
,
T.
, and
Chu
,
F.
,
2022
, “
Piezoelectric Energy Harvester for Rolling Bearings With Capability of Self-Powered Condition Monitoring
,”
Energy
,
238
, p.
121770
.10.1016/j.energy.2021.121770
24.
Zhou
,
Y.
,
Xiao
,
X.
,
Chen
,
G.
,
Zhao
,
X.
, and
Chen
,
J.
,
2022
, “
Self-Powered Sensing Technologies for Human Metaverse Interfacing
,”
Joule
,
6
(
7
), pp.
1381
1389
.10.1016/j.joule.2022.06.011
25.
Zhang
,
S.
,
Bick
,
M.
,
Xiao
,
X.
,
Chen
,
G.
,
Nashalian
,
A.
, and
Chen
,
J.
,
2021
, “
Leveraging Triboelectric Nanogenerators for Bioengineering
,”
Matter
,
4
(
3
), pp.
845
887
.10.1016/j.matt.2021.01.006
26.
Chen
,
G.
,
Fang
,
Y.
,
Zhao
,
X.
,
Tat
,
T.
, and
Chen
,
J.
,
2021
, “
Textiles for Learning Tactile İnteractions
,”
Nat. Electron.
,
4
(
3
), pp.
175
176
.10.1038/s41928-021-00560-6
27.
Zhao
,
X.
,
Askari
,
H.
, and
Chen
,
J.
,
2021
, “
Nanogenerators for Smart Cities in the Era of 5G and Internet of Things
,”
Joule
,
5
(
6
), pp.
1391
1431
.10.1016/j.joule.2021.03.013
28.
Zhou
,
Z.
,
Padgett
,
S.
,
Cai
,
Z.
,
Conta
,
G.
,
Wu
,
Y.
,
He
,
Q.
,
Zhang
,
S.
,
Sun
,
C.
,
Liu
,
J.
,
Fan
,
E.
,
Meng
,
K.
,
Lin
,
Z.
,
Uy
,
C.
,
Yang
,
J.
, and
Chen
,
J.
,
2020
, “
Single-Layered Ultra-Soft Washable Smart Textiles for All-Around Ballistocardiograph, Respiration, and Posture Monitoring During Sleep
,”
Biosens. Bioelectron.
,
155
(Part B), p.
112064
.10.1016/j.bios.2020.112064
29.
Su
,
Y.
,
Yang
,
T.
,
Zhao
,
X.
,
Cai
,
Z.
,
Chen
,
G.
,
Yao
,
M.
,
Chen
,
K.
,
Bick
,
M.
,
Wang
,
J.
,
Li
,
S.
,
Xie
,
G.
,
Tai
,
H.
,
Du
,
X.
,
Jiang
,
Y.
, and
Chen
,
J.
,
2020
, “
A Wireless Energy Transmission Enabled Wearable Active Acetone Biosensor for Non-Invasive Prediabetes Diagnosis
,”
Nano Energy
,
74
, p.
104941
.10.1016/j.nanoen.2020.104941
30.
Su
,
Y.
,
Wang
,
J.
,
Wang
,
B.
,
Yang
,
T.
,
Yang
,
B.
,
Xie
,
G.
,
Zhou
,
Y.
,
Zhang
,
S.
,
Tai
,
H.
,
Cai
,
Z.
,
Chen
,
G.
,
Jiang
,
Y.
,
Chen
,
L.-Q.
, and
Chen
,
J.
,
2020
, “
Alveolus-Inspired Active Membrane Sensors for Self-Powered Wearable Chemical Sensing and Breath Analysis
,”
ACS Nano
,
14
(
5
), pp.
6067
6075
.10.1021/acsnano.0c01804
31.
Xu
,
Q.
,
Fang
,
Y.
,
Jing
,
Q.
,
Hu
,
N.
,
Lin
,
K.
,
Pan
,
Y.
,
Xu
,
L.
,
Gao
,
H.
,
Yuan
,
M.
,
Chu
,
L.
,
Ma
,
Y.
,
Xie
,
Y.
,
Chen
,
J.
, and
Wang
,
L.
,
2021
, “
A Portable Triboelectric Spirometer for Wireless Pulmonary Function Monitoring
,”
Biosens. Bioelectron.
,
187
, p.
113329
.10.1016/j.bios.2021.113329
32.
Lin
,
Z.
,
Zhang
,
G.
,
Xiao
,
X.
,
Au
,
C.
,
Zhou
,
Y.
,
Sun
,
C.
,
Zhou
,
Z.
,
Yan
,
R.
,
Fan
,
E.
,
Si
,
S.
,
Weng
,
L.
,
Mathur
,
S.
,
Yang
,
J.
, and
Chen
,
J.
,
2022
, “
A Personalized Acoustic Interface for Wearable Human–Machine Interaction
,”
Adv. Funct. Mater.
,
32
(
9
), p.
2109430
.10.1002/adfm.202109430
33.
Fang
,
Y.
,
Zou
,
Y.
,
Xu
,
J.
,
Chen
,
G.
,
Zhou
,
Y.
,
Deng
,
W.
,
Zhao
,
X.
,
Roustaei
,
M.
,
Hsiai
,
T. K.
, and
Chen
,
J.
,
2021
, “
Ambulatory Cardiovascular Monitoring Via a Machine-Learning-Assisted Textile Triboelectric Sensor
,”
Adv. Mater.
,
33
(
41
), p.
2104178
.10.1002/adma.202104178
34.
Fang
,
Y.
,
Xu
,
J.
,
Xiao
,
X.
,
Zou
,
Y.
,
Zhao
,
X.
,
Zhou
,
Y.
, and
Chen
,
J.
,
2022
, “
A Deep-Learning-Assisted On-Mask Sensor Network for Adaptive Respiratory Monitoring
,”
Adv. Mater.
,
34
(
24
), p.
2200252
.10.1002/adma.202200252
35.
Feng
,
X.
,
Zhang
,
Y.
,
Kang
,
L.
,
Wang
,
L.
,
Duan
,
C.
,
Yin
,
K.
,
Pang
,
J.
, and
Wang
,
K.
,
2021
, “
Integrated Energy Storage System Based on Triboelectric Nanogenerator in Electronic Devices
,”
Front. Chem. Sci. Eng.
,
15
(
2
), pp.
238
250
.10.1007/s11705-020-1956-3
36.
Liu
,
L.
,
Li
,
J.
,
Ou-Yang
,
W.
,
Guan
,
Z.
,
Hu
,
X.
,
Xie
,
M.
, and
Tian
,
Z.
,
2022
, “
Ferromagnetic-Assisted Maxwell's Displacement Current Based on Iron/Polymer Composite for Improving the Triboelectric Nanogenerator Output
,”
Nano Energy
,
96
, p.
107139
.10.1016/j.nanoen.2022.107139
37.
Shao
,
J.
,
Willatzen
,
M.
,
Jiang
,
T.
,
Tang
,
W.
,
Chen
,
X.
,
Wang
,
J.
, and
Wang
,
Z. L.
,
2019
, “
Quantifying the Power Output and Structural Figure-of-Merits of Triboelectric Nanogenerators in a Charging System Starting From the Maxwell's Displacement Current
,”
Nano Energy
,
59
, pp.
380
389
.10.1016/j.nanoen.2019.02.051
38.
Hyodo
,
T.
,
2022
, “
Maxwell's Displacement Current and the Magnetic Field Between Capacitor Electrodes
,”
Eur. J. Phys.
,
43
, p.
65202
.10.1088/1361-6404/ac8705
39.
Zhao
,
H.
,
Xu
,
M.
,
Shu
,
M.
,
An
,
J.
,
Ding
,
W.
,
Liu
,
X.
,
Wang
,
S.
,
Zhao
,
C.
,
Yu
,
H.
,
Wang
,
H.
,
Wang
,
C.
,
Fu
,
X.
,
Pan
,
X.
,
Xie
,
G.
, and
Wang
,
Z. L.
,
2022
, “
Underwater Wireless Communication Via TENG-Generated Maxwell's Displacement Current
,”
Nat. Commun.
,
13
(
1
), p.
3325
.10.1038/s41467-022-31042-8
40.
Yang
,
Y.
,
Xie
,
L.
,
Wen
,
Z.
,
Chen
,
C.
,
Chen
,
X.
,
Wei
,
A.
,
Cheng
,
P.
,
Xie
,
X.
, and
Sun
,
X.
,
2018
, “
Coaxial Triboelectric Nanogenerator and Supercapacitor Fiber-Based Self-Charging Power Fabric
,”
ACS Appl. Mater. Interfaces
,
10
(
49
), pp.
42356
42362
.10.1021/acsami.8b15104
41.
Wang
,
Z. L.
,
2017
, “
On Maxwell's Displacement Current for Energy and Sensors: The Origin of Nanogenerators
,”
Mater. Today
,
20
(
2
), pp.
74
82
.10.1016/j.mattod.2016.12.001
42.
Wang
,
Z. L.
,
2021
, “
From Contact Electrification to Triboelectric Nanogenerators
,”
Rep. Prog. Phys.
,
84
, p.
96502
.10.1088/1361-6633/ac0a50
43.
Zhou
,
H.
,
Dong
,
J.
,
Liu
,
H.
,
Zhu
,
L.
,
Xu
,
C.
,
He
,
X.
,
Zhang
,
S.
, and
Song
,
Q.
,
2022
, “
The Coordination of Displacement and Conduction Currents to Boost the İnstantaneous Power Output of a Water-Tube Triboelectric Nanogenerator
,”
Nano Energy
,
95
, p.
107050
.10.1016/j.nanoen.2022.107050
44.
Zhao
,
Z.
,
Liu
,
D.
,
Li
,
Y.
,
Wang
,
Z. L.
, and
Wang
,
J.
,
2022
, “
Direct-Current Triboelectric Nanogenerator Based on Electrostatic Breakdown Effect
,”
Nano Energy
,
102
, p.
107745
.10.1016/j.nanoen.2022.107745
45.
Wu
,
J.
,
Zheng
,
Y.
, and
Li
,
X.
,
2021
, “
Recent Progress in Self-Powered Sensors Based on Triboelectric Nanogenerators
,”
Sensors
,
21
(
21
), p.
7129
.10.3390/s21217129
46.
Luo
,
Q.
,
Xiao
,
K.
,
Zhang
,
J.
, and
Sun
,
W.
,
2022
, “
Direct-Current Triboelectric Nanogenerators Based on Semiconductor Structure
,”
ACS Appl. Electron. Mater.
,
4
(
9
), pp.
4212
4230
.10.1021/acsaelm.2c00758
47.
Fang
,
L.
,
Zheng
,
Q.
,
Hou
,
W.
,
Zheng
,
L.
, and
Li
,
H.
,
2022
, “
A Self-Powered Vibration Sensor Based on the Coupling of Triboelectric Nanogenerator and Electromagnetic Generator
,”
Nano Energy
,
97
, p.
107164
.10.1016/j.nanoen.2022.107164
48.
Jie
,
Y.
,
Ma
,
J.
,
Chen
,
Y.
,
Cao
,
X.
,
Wang
,
N.
, and
Wang
,
Z. L.
,
2018
, “
Efficient Delivery of Power Generated by a Rotating Triboelectric Nanogenerator by Conjunction of Wired and Wireless Transmissions Using Maxwell's Displacement Currents
,”
Adv. Energy Mater.
,
8
(
31
), p.
1802084
.10.1002/aenm.201802084
49.
Shao
,
J.
,
Jiang
,
T.
, and
Wang
,
Z.
,
2020
, “
Theoretical Foundations of Triboelectric Nanogenerators (TENGs)
,”
Sci. China Technol. Sci.
,
63
(
7
), pp.
1087
1109
.10.1007/s11431-020-1604-9
50.
Li
,
Y.
,
Li
,
G.
,
Zhang
,
P.
,
Zhang
,
H.
,
Ren
,
C.
,
Shi
,
X.
,
Cai
,
H.
,
Zhang
,
Y.
,
Wang
,
Y.
,
Guo
,
Z.
,
Li
,
H.
,
Ding
,
G.
,
Cai
,
H.
,
Yang
,
Z.
,
Zhang
,
C.
, and
Wang
,
Z. L.
,
2021
, “
Contribution of Ferromagnetic Medium to the Output of Triboelectric Nanogenerators Derived From Maxwell's Equations
,”
Adv. Energy Mater.
,
11
(
21
), p.
2003921
.10.1002/aenm.202003921
51.
Zeng
,
Y.
,
Cheng
,
Y.
,
Zhu
,
J.
,
Jie
,
Y.
,
Ma
,
P.
,
Lu
,
H.
,
Cao
,
X.
, and
Wang
,
Z. L.
,
2022
, “
Self-Powered Sensors Driven by Maxwell's Displacement Current Wirelessly Provided by TENG
,”
Appl. Mater. Today
,
27
, p.
101375
.10.1016/j.apmt.2022.101375
52.
Cao
,
X.
,
Zhang
,
M.
,
Huang
,
J.
,
Jiang
,
T.
,
Zou
,
J.
,
Wang
,
N.
, and
Wang
,
Z. L.
,
2018
, “
Inductor-Free Wireless Energy Delivery Via Maxwell's Displacement Current From an Electrodeless Triboelectric Nanogenerator
,”
Adv. Mater.
,
30
(
6
), p.
1704077
.10.1002/adma.201704077
53.
Wu
,
W.
,
Yang
,
T.
,
Zhang
,
Y.
,
Wang
,
F.
,
Nie
,
Q.
,
Ma
,
Y.
,
Cao
,
X.
,
Wang
,
Z. L.
,
Wang
,
N.
, and
Zhang
,
L.
,
2019
, “
Application of Displacement-Current-Governed Triboelectric Nanogenerator in an Electrostatic Discharge Protection System for the Next-Generation Green Tire
,”
ACS Nano
,
13
(
7
), pp.
8202
8212
.10.1021/acsnano.9b03427
54.
Sun
,
W.
,
Jiang
,
Z.
,
Xu
,
X.
,
Han
,
Q.
, and
Chu
,
F.
,
2021
, “
Harmonic Balance Analysis of Output Characteristics of Free-Standing Mode Triboelectric Nanogenerators
,”
Int. J. Mech. Sci.
,
207
, p.
106668
.10.1016/j.ijmecsci.2021.106668
55.
Shao
,
J.
,
Willatzen
,
M.
,
Shi
,
Y.
, and
Wang
,
Z. L.
,
2019
, “
3D Mathematical Model of Contact-Separation and Single-Electrode Mode Triboelectric Nanogenerators
,”
Nano Energy
,
60
, pp.
630
640
.10.1016/j.nanoen.2019.03.072
56.
Zhang
,
R.
, and
Olin
,
H.
,
2020
, “
Material Choices for Triboelectric Nanogenerators: A Critical Review
,”
EcoMat
,
2
(
4
), p.
e12062
.10.1002/eom2.12062
57.
Karimi
,
M.
,
Seddighi
,
S.
, and
Mohammadpour
,
R.
,
2021
, “
Nanostructured Versus Flat Compact Electrode for Triboelectric Nanogenerators at High Humidity
,”
Sci. Rep.
,
11
(
1
), p.
16191
.10.1038/s41598-021-95621-3
58.
Sahu
,
M.
,
Hajra
,
S.
,
Kim
,
H.-G.
,
Rubahn
,
H.-G.
,
Kumar Mishra
,
Y.
, and
Kim
,
H. J.
,
2021
, “
Additive Manufacturing-Based Recycling of Laboratory Waste Into Energy Harvesting Device for Self-Powered Applications
,”
Nano Energy
,
88
, p.
106255
.10.1016/j.nanoen.2021.106255
59.
Lee
,
D.
, and
Kim
,
D.
,
2020
, “
Dual Output From Unitary Input for a Hybrid Coaxial Triboelectric Nanogenerator Inspired by a Crank Engine
,”
Nano Energy
,
71
, p.
104599
.10.1016/j.nanoen.2020.104599
60.
Wen
,
D.-L.
,
Huang
,
P.
,
Qian
,
H.-Y.
,
Ba
,
Y.-Y.
,
Ren
,
Z.-Y.
,
Tu
,
C.
,
Gong
,
T.-X.
,
Huang
,
W.
, and
Zhang
,
X.-S.
,
2021
, “
Hybrid Nanogenerator-Based Self-Powered Double-Authentication Microsystem for Smart Identification
,”
Nano Energy
,
86
, p.
106100
.10.1016/j.nanoen.2021.106100
61.
Xu
,
S.
,
Feng
,
Y.
,
Liu
,
Y.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Feng
,
M.
,
Zhang
,
S.
,
Sun
,
G.
, and
Wang
,
D.
,
2021
, “
Gas-Solid Two-Phase Flow-Driven Triboelectric Nanogenerator for Wind-Sand Energy Harvesting and Self-Powered Monitoring Sensor
,”
Nano Energy
,
85
, p.
106023
.10.1016/j.nanoen.2021.106023
62.
Shang
,
W.
,
Gu
,
G.
,
Zhang
,
W.
,
Luo
,
H.
,
Wang
,
T.
,
Zhang
,
B.
,
Guo
,
J.
,
Cui
,
P.
,
Yang
,
F.
,
Cheng
,
G.
, and
Du
,
Z.
,
2021
, “
Rotational Pulsed Triboelectric Nanogenerators Integrated With Synchronously Triggered Mechanical Switches for High Efficiency Self-Powered Systems
,”
Nano Energy
,
82
, p.
105725
.10.1016/j.nanoen.2020.105725
63.
Wang
,
J.
,
Meng
,
C.
,
Gu
,
Q.
,
Tseng
,
M. C.
,
Tang
,
S. T.
,
Kwok
,
H. S.
,
Cheng
,
J.
, and
Zi
,
Y.
,
2020
, “
Normally Transparent Tribo-Induced Smart Window
,”
ACS Nano
,
14
(
3
), pp.
3630
3639
.10.1021/acsnano.0c00107
64.
Yang
,
W.
,
Wang
,
X.
,
Chen
,
P.
,
Hu
,
Y.
,
Li
,
L.
, and
Sun
,
Z.
,
2021
, “
On the Controlled Adhesive Contact and Electrical Performance of Vertical Contact-Separation Mode Triboelectric Nanogenerators With Micro-Grooved Surfaces
,”
Nano Energy
,
85
, p.
106037
.10.1016/j.nanoen.2021.106037
65.
Xu
,
Z.
,
Zhang
,
D.
,
Cai
,
H.
,
Yang
,
Y.
,
Zhang
,
H.
, and
Du
,
C.
,
2022
, “
Performance Enhancement of Triboelectric Nanogenerators Using Contact-Separation Mode in Conjunction With the Sliding Mode and Multifunctional Application for Motion Monitoring
,”
Nano Energy
,
102
, p.
107719
.10.1016/j.nanoen.2022.107719
66.
Jiang
,
B.
,
Long
,
Y.
,
Pu
,
X.
,
Hu
,
W.
, and
Wang
,
Z. L.
,
2021
, “
A Stretchable, Harsh Condition-Resistant and Ambient-Stable Hydrogel and Its Applications in Triboelectric Nanogenerator
,”
Nano Energy
,
86
, p.
106086
.10.1016/j.nanoen.2021.106086
67.
Yin
,
X.
,
Liu
,
D.
,
Zhou
,
L.
,
Li
,
X.
,
Zhang
,
C.
,
Cheng
,
P.
,
Guo
,
H.
,
Song
,
W.
,
Wang
,
J.
, and
Wang
,
Z. L.
,
2019
, “
Structure and Dimension Effects on the Performance of Layered Triboelectric Nanogenerators in Contact-Separation Mode
,”
ACS Nano
,
13
(
1
), pp.
698
705
.10.1021/acsnano.8b07935
68.
Zhang
,
H.
,
Quan
,
L.
,
Chen
,
J.
,
Xu
,
C.
,
Zhang
,
C.
,
Dong
,
S.
,
,
C.
, and
Luo
,
J.
,
2019
, “
A General Optimization Approach for Contact-Separation Triboelectric Nanogenerator
,”
Nano Energy
,
56
, pp.
700
707
.10.1016/j.nanoen.2018.11.062
69.
Wang
,
Z. L.
,
Lin
,
L.
,
Chen
,
J.
,
Niu
,
S.
, and
Zi
,
Y.
,
2016
,
Triboelectric Nanogenerator: Vertical Contact-Separation Mode BT - Triboelectric Nanogenerators
,
Z. L.
Wang
,
L.
Lin
,
J.
Chen
,
S.
Niu
, and
Y.
Zi
, eds.,
Springer International Publishing
,
Cham
, Switzerland, pp.
23
47
.
70.
Yang
,
J.
,
Chen
,
J.
,
Yang
,
Y.
,
Zhang
,
H.
,
Yang
,
W.
,
Bai
,
P.
,
Su
,
Y.
, and
Wang
,
Z. L.
,
2014
, “
Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator
,”
Adv. Energy Mater.
,
4
(
6
), p.
1301322
.10.1002/aenm.201301322
71.
Min
,
G.
,
Dahiya
,
A. S.
,
Mulvihill
,
D. M.
, and
Dahiya
,
R.
,
2021
, “
A Wide Range Self-Powered Flexible Pressure Sensor Based on Triboelectric Nanogenerator
,”
IEEE International Conference on Flexible and Printable Sensors and Systems
, Manchester, UK, June 20–23, pp.
1
4
.10.1109/FLEPS51544.2021.9469759
72.
Torres
,
F. G.
, and
De-la-Torre
,
G. E.
,
2021
, “
Polysaccharide-Based Triboelectric Nanogenerators: A Review
,”
Carbohydr. Polym.
,
251
, p.
117055
.10.1016/j.carbpol.2020.117055
73.
Hasan
,
S.
,
Kouzani
,
A. Z.
,
Adams
,
S.
,
Long
,
J.
, and
Mahmud
,
M. A. P.
,
2022
, “
Comparative Study on the Contact-Separation Mode Triboelectric Nanogenerator
,”
J. Electrostat.
,
116
, p.
103685
.10.1016/j.elstat.2022.103685
74.
Min
,
G.
,
Manjakkal
,
L.
,
Mulvihill
,
D. M.
, and
Dahiya
,
R. S.
,
2020
, “
Triboelectric Nanogenerator With Enhanced Performance Via an Optimized Low Permittivity Substrate
,”
IEEE Sens. J.
,
20
(
13
), pp.
6856
6862
.10.1109/JSEN.2019.2938605
75.
Min
,
G.
,
Manjakkal
,
L.
,
Mulvihill
,
D. M.
, and
Dahiya
,
R. S.
,
2018
, “
Enhanced Triboelectric Nanogenerator Performance Via an Optimised Low Permittivity, Low Thickness Substrate
,”
IEEE Sensors
, New Delhi, India, Oct. 28–31, pp.
1
4
.10.1109/ICSENS.2018.8589631
76.
Wang
,
Z.
,
Lin
,
L.
,
Niu
,
S.
, and
Zi
,
Y.
,
2016
,
Triboelectric Nanogenerator: Vertical Contact-Sep. Mode
, pp.
23
47
.10.1007/978-3-319-40039-6
77.
Jiang
,
C.
,
Wu
,
C.
,
Li
,
X.
,
Yao
,
Y.
,
Lan
,
L.
,
Zhao
,
F.
,
Ye
,
Z.
,
Ying
,
Y.
, and
Ping
,
J.
,
2019
, “
All-Electrospun Flexible Triboelectric Nanogenerator Based on Metallic MXene Nanosheets
,”
Nano Energy
,
59
, pp.
268
276
.10.1016/j.nanoen.2019.02.052
78.
Ma
,
M.
,
Kang
,
Z.
,
Liao
,
Q.
,
Zhang
,
Q.
,
Gao
,
F.
,
Zhao
,
X.
,
Zhang
,
Z.
, and
Zhang
,
Y.
,
2018
, “
Development, Applications, and Future Directions of Triboelectric Nanogenerators
,”
Nano Res.
,
11
(
6
), pp.
2951
2969
.10.1007/s12274-018-1997-9
79.
Rathore
,
S.
,
Sharma
,
S.
,
Swain
,
B. P.
, and
Ghadai
,
R. K.
,
2018
, “
A Critical Review on Triboelectric Nanogenerator
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
377
, p.
012186
.10.1088/1757-899X/377/1/012186
80.
Tang
,
Q.
,
Pu
,
X.
,
Zeng
,
Q.
,
Yang
,
H.
,
Li
,
J.
,
Wu
,
Y.
,
Guo
,
H.
,
Huang
,
Z.
, and
Hu
,
C.
,
2019
, “
A Strategy to Promote Efficiency and Durability for Sliding Energy Harvesting by Designing Alternating Magnetic Stripe Arrays in Triboelectric Nanogenerator
,”
Nano Energy
,
66
, p.
104087
.10.1016/j.nanoen.2019.104087
81.
Haroun
,
A.
,
Tarek
,
M.
,
Mosleh
,
M.
, and
Ismail
,
F.
,
2022
, “
Recent Progress on Triboelectric Nanogenerators for Vibration Energy Harvesting and Vibration Sensing
,”
Nanomaterials
,
12
(
17
), p.
2960
.10.3390/nano12172960
82.
Ma
,
G.
,
Li
,
B.
,
Niu
,
S.
,
Zhang
,
J.
,
Wang
,
D.
,
Wang
,
Z.
,
Zhou
,
L.
,
Liu
,
Q.
,
Liu
,
L.
,
Wang
,
J.
,
Han
,
Z.
, and
Ren
,
L.
,
2022
, “
A Bioinspired Triboelectric Nanogenerator for All State Energy Harvester and Self-Powered Rotating Monitor
,”
Nano Energy
,
91
, p.
106637
.10.1016/j.nanoen.2021.106637
83.
Bai
,
P.
,
Zhu
,
G.
,
Liu
,
Y.
,
Chen
,
J.
,
Jing
,
Q.
,
Yang
,
W.
,
Ma
,
J.
,
Zhang
,
G.
, and
Wang
,
Z. L.
,
2013
, “
Cylindrical Rotating Triboelectric Nanogenerator
,”
ACS Nano
,
7
(
7
), pp.
6361
6366
.10.1021/nn402491y
84.
Li
,
J. J.
,
Wu
,
Q.
,
Wang
,
J.
, and
Li
,
J. J.
,
2021
, “
Neural Networks-Based Sliding Mode Tracking Control for the Four Wheel-Legged Robot Under Uncertain İnteraction
,”
Int. J. Robust Nonlinear Control
,
31
(
9
), pp.
4306
4323
.10.1002/rnc.5473
85.
Yu
,
S.
,
Xie
,
M.
,
Ma
,
J.
,
Yao
,
J.
,
Pan
,
L.
, and
Wu
,
H.
,
2021
, “
Precise Robust Motion Tracking of a Piezoactuated Micropuncture Mechanism With Sliding Mode Control
,”
J. Franklin Inst.
,
358
(
8
), pp.
4410
4434
.10.1016/j.jfranklin.2021.04.025
86.
Korkmaz
,
S.
, and
Kariper
,
İA.
,
2021
, “
Production and Applications of Flexible/Wearable Triboelectric Nanogenerator (TENGS)
,”
Synth. Met.
,
273
, p.
116692
.10.1016/j.synthmet.2020.116692
87.
Kartashova
,
A.
,
Volkovoynova
,
L.
,
Serdobintsev
,
A.
,
Kozyrev
,
A.
,
Kozhevnikov
,
I.
,
Tolstoi
,
A.
,
Pavlov
,
A.
,
Bratashov
,
D.
, and
Starodubov
,
A.
,
2022
, “
Co-Deposited Si-Al Thin Films as a Base Material to Decrease the Reflectance in the Millimeter-Band Frequencies
,”
SPIE
Paper No. 12193, p.
31
.10.1117/12.2626493
88.
Tremmel
,
S.
,
Luo
,
X.
,
Rothammer
,
B.
,
Seynstahl
,
A.
,
Wang
,
B.
,
Rosenkranz
,
A.
,
Marian
,
M.
, and
Zhu
,
L.
,
2022
, “
Evaluation of DLC, MoS2, and Ti3C2Tx Thin Films for Triboelectric Nanogenerators
,”
Nano Energy
,
97
, p.
107185
.10.1016/j.nanoen.2022.107185
89.
Wang
,
Y.
,
Zhang
,
Q.
,
Tao
,
R.
,
Xie
,
J.
,
Canyelles-Pericas
,
P.
,
Torun
,
H.
,
Reboud
,
J.
,
McHale
,
G.
,
Dodd
,
L. E.
,
Yang
,
X.
,
Luo
,
J.
,
Wu
,
Q.
, and
Fu
,
Y.
,
2021
, “
Flexible/Bendable Acoustofluidics Based on Thin-Film Surface Acoustic Waves on Thin Aluminum Sheets
,”
ACS Appl. Mater. Interfaces
,
13
(
14
), pp.
16978
16986
.10.1021/acsami.0c22576
90.
He
,
C.
,
Wu
,
H.
,
Jia
,
C.
,
Zhang
,
K.
,
He
,
L.
,
Wang
,
Q.
,
Li
,
J.
,
Liu
,
N.
,
Zhang
,
S.
,
Zhao
,
W.
,
Chen
,
Z.
, and
Shen
,
B.
,
2021
, “
Low-Defect-Density Aluminum Nitride (AlN) Thin Films Realized by Zigzag Macrostep-Induced Dislocation Redirection
,”
Cryst. Growth Des.
,
21
(
6
), pp.
3394
3400
.10.1021/acs.cgd.1c00170
91.
Wang
,
Z. L.
,
2014
, “
Triboelectric Nanogenerators as New Energy Technology and Self-Powered Sensors – Principles, Problems and Perspectives
,”
Faraday Discuss
,
176
, pp.
447
458
.10.1039/C4FD00159A
92.
Wang
,
A. C.
,
Zhang
,
B.
,
Xu
,
C.
,
Zou
,
H.
,
Lin
,
Z.
, and
Wang
,
Z. L.
,
2020
, “
Unraveling Temperature-Dependent Contact Electrification Between Sliding-Mode Triboelectric Pairs
,”
Adv. Funct. Mater.
,
30
(
12
), p.
1909384
.10.1002/adfm.201909384
93.
Song
,
W.-Z.
,
Qiu
,
H.-J.
,
Zhang
,
J.
,
Yu
,
M.
,
Ramakrishna
,
S.
,
Wang
,
Z. L.
, and
Long
,
Y.-Z.
,
2021
, “
Sliding Mode Direct Current Triboelectric Nanogenerators
,”
Nano Energy
,
90
(Part A), p.
106531
.10.1016/j.nanoen.2021.106531
94.
Kumar
,
S.
,
Singh
,
T. P.
,
Kumar
,
R.
, and
Jain
,
S. C.
,
2022
, “
Experiment and Parametric Analysis of Sliding Mode Triboelectric Energy Harvester
,”
Mech. Based Des. Struct. Mach.
, pp.
1
15
.10.1080/15397734.2022.2040362
95.
Khorsand
,
M.
,
Tavakoli
,
J.
,
Kamanya
,
K.
, and
Tang
,
Y.
,
2019
, “
Simulation of High-Output and Lightweight Sliding-Mode Triboelectric Nanogenerators
,”
Nano Energy
,
66
, p.
104115
.10.1016/j.nanoen.2019.104115
96.
Wang
,
J.
,
Yu
,
X.
,
Zhao
,
D.
,
Yu
,
Y.
,
Gao
,
Q.
,
Cheng
,
T.
, and
Wang
,
Z. L.
,
2021
, “
Enhancing Output Performance of Triboelectric Nanogenerator Via Charge Clamping
,”
Adv. Energy Mater.
,
11
(
31
), p.
2101356
.10.1002/aenm.202101356
97.
Wang
,
Z. L.
,
Lin
,
L.
,
Chen
,
J.
,
Niu
,
S.
, and
Zi
,
Y.
,
2016
,
Triboelectric Nanogenerator: Single-Electrode Mode BT - Triboelectric Nanogenerators
,
Z. L.
Wang
,
L.
Lin
,
J.
Chen
,
S.
Niu
, and
Y.
Zi
, eds.,
Springer International Publishing
,
Cham
, Switzerland, pp.
91
107
.
98.
Luo
,
X.
,
Zhu
,
L.
,
Wang
,
Y.-C.
,
Li
,
J.
,
Nie
,
J.
, and
Wang
,
Z. L.
,
2021
, “
A Flexible Multifunctional Triboelectric Nanogenerator Based on MXene/PVA Hydrogel
,”
Adv. Funct. Mater.
,
31
(
38
), p.
2104928
.10.1002/adfm.202104928
99.
Lee
,
Y.
,
Kang
,
S. G.
, and
Jeong
,
J.
,
2021
, “
Sliding Triboelectric Nanogenerator With Staggered Electrodes
,”
Nano Energy
,
86
, p.
106062
.10.1016/j.nanoen.2021.106062
100.
Tao
,
J.
,
Bao
,
R.
,
Wang
,
X.
,
Peng
,
Y.
,
Li
,
J.
,
Fu
,
S.
,
Pan
,
C.
, and
Wang
,
Z. L.
,
2019
, “
Self-Powered Tactile Sensor Array Systems Based on the Triboelectric Effect
,”
Adv. Funct. Mater.
,
29
(
41
), p.
1806379
.10.1002/adfm.201806379
101.
Stetco
,
C.
,
Mühlbacher-Karrer
,
S.
,
Lucchi
,
M.
,
Weyrer
,
M.
,
Faller
,
L.-M.
, and
Zangl
,
H.
,
2020
, “
Gesture-Based Contactless Control of Mobile Manipulators Using Capacitive Sensing
,”
IEEE International Instrumentation and Measurement Technology Conference
, Dubrovnik, Croatia, May 25–28, pp.
1
6
.10.1109/I2MTC43012.2020.9128751
102.
Venugopal
,
K.
,
Panchatcharam
,
P.
,
Chandrasekhar
,
A.
, and
Shanmugasundaram
,
V.
,
2021
, “
Comprehensive Review on Triboelectric Nanogenerator Based Wrist Pulse Measurement: Sensor Fabrication and Diagnosis of Arterial Pressure
,”
ACS Sens.
,
6
(
5
), pp.
1681
1694
.10.1021/acssensors.0c02324
103.
Yi
,
F.
,
Lin
,
L.
,
Niu
,
S.
,
Yang
,
J.
,
Wu
,
W.
,
Wang
,
S.
,
Liao
,
Q.
,
Zhang
,
Y.
, and
Wang
,
Z. L.
,
2014
, “
Self-Powered Trajectory, Velocity, and Acceleration Tracking of a Moving Object/Body Using a Triboelectric Sensor
,”
Adv. Funct. Mater.
,
24
(
47
), pp.
7488
7494
.10.1002/adfm.201402703
104.
Anaya
,
D. V.
,
Zhan
,
K.
,
Tao
,
L.
,
Lee
,
C.
,
Yuce
,
M. R.
, and
Alan
,
T.
,
2021
, “
Contactless Tracking of Humans Using Non-Contact Triboelectric Sensing Technology: Enabling New Assistive Applications for the Elderly and the Visually İmpaired
,”
Nano Energy
,
90
(Part A), p.
106486
.10.1016/j.nanoen.2021.106486
105.
He
,
W.
,
Sohn
,
M.
,
Ma
,
R.
, and
Kang
,
D. J.
,
2020
, “
Flexible Single-Electrode Triboelectric Nanogenerators With MXene/PDMS Composite Film for Biomechanical Motion Sensors
,”
Nano Energy
,
78
, p.
105383
.10.1016/j.nanoen.2020.105383
106.
Wang
,
J.
,
Cui
,
P.
,
Zhang
,
J.
,
Ge
,
Y.
,
Liu
,
X.
,
Xuan
,
N.
,
Gu
,
G.
,
Cheng
,
G.
, and
Du
,
Z.
,
2021
, “
A Stretchable Self-Powered Triboelectric Tactile Sensor With EGaIn Alloy Electrode for Ultra-Low-Pressure Detection
,”
Nano Energy
,
89
(Part A), p.
106320
.10.1016/j.nanoen.2021.106320
107.
Zhang
,
W.
,
Liu
,
Q.
,
Chao
,
S.
,
Liu
,
R.
,
Cui
,
X.
,
Sun
,
Y.
,
Ouyang
,
H.
, and
Li
,
Z.
,
2021
, “
Ultrathin Stretchable Triboelectric Nanogenerators Improved by Postcharging Electrode Material
,”
ACS Appl. Mater. Interfaces
,
13
(
36
), pp.
42966
42976
.10.1021/acsami.1c13840
108.
Ba
,
Y.-Y.
,
Bao
,
J.-F.
,
Wang
,
Z.-Y.
,
Deng
,
H.-T.
,
Wen
,
D.-L.
,
Zhang
,
X.-R.
,
Tu
,
C.
, and
Zhang
,
X.-S.
,
2021
, “
Self-Powered Trajectory-Tracking Microsystem Based on Electrode-Miniaturized Triboelectric Nanogenerator
,”
Nano Energy
,
82
, p.
105730
.10.1016/j.nanoen.2020.105730
109.
Niu
,
H.
,
Li
,
H.
,
Gao
,
S.
,
Li
,
Y.
,
Wei
,
X.
,
Chen
,
Y.
,
Yue
,
W.
,
Zhou
,
W.
, and
Shen
,
G.
,
2022
, “
Perception-to-Cognition Tactile Sensing Based on Artificial-Intelligence-Motivated Human Full-Skin Bionic Electronic Skin
,”
Adv. Mater.
,
34
(
31
), p.
2202622
.10.1002/adma.202202622
110.
Zhang
,
Z.
,
Yin
,
N.
,
Wu
,
Z.
,
Pan
,
S.
, and
Wang
,
D.
,
2021
, “
Research Methods of Contact Electrification: Theoretical Simulation and Experiment
,”
Nano Energy
,
79
, p.
105501
.10.1016/j.nanoen.2020.105501
111.
Zhao
,
X.
,
Lu
,
X.
,
Zheng
,
Q.
,
Fang
,
L.
,
Zheng
,
L.
,
Chen
,
X.
, and
Wang
,
Z. L.
,
2021
, “
Studying of Contact Electrification and Electron Transfer at Liquid-Liquid İnterface
,”
Nano Energy
,
87
, p.
106191
.10.1016/j.nanoen.2021.106191
112.
Zhang
,
Z.
,
Bai
,
Y.
,
Xu
,
L.
,
Zhao
,
M.
,
Shi
,
M.
,
Wang
,
Z. L.
, and
Lu
,
X.
,
2019
, “
Triboelectric Nanogenerators With Simultaneous Outputs in Both Single-Electrode Mode and Freestanding-Triboelectric-Layer Mode
,”
Nano Energy
,
66
, p.
104169
.10.1016/j.nanoen.2019.104169
113.
Yar
,
A.
,
2021
, “
High Performance of Multi-Layered Triboelectric Nanogenerators for Mechanical Energy Harvesting
,”
Energy
,
222
, p.
119949
.10.1016/j.energy.2021.119949
114.
Chen
,
B.
,
Tang
,
W.
, and
Wang
,
Z. L.
,
2021
, “
Advanced 3D Printing-Based Triboelectric Nanogenerator for Mechanical Energy Harvesting and Self-Powered Sensing
,”
Mater Today
,
50
, pp.
224
238
.10.1016/j.mattod.2021.05.017
115.
Niu
,
S.
,
Liu
,
Y.
,
Wang
,
S.
,
Lin
,
L.
,
Zhou
,
Y. S.
,
Hu
,
Y.
, and
Wang
,
Z. L.
,
2014
, “
Theoretical Investigation and Structural Optimization of Single-Electrode Triboelectric Nanogenerators
,”
Adv. Funct. Mater.
,
24
(
22
), pp.
3332
3340
.10.1002/adfm.201303799
116.
Yan
,
X.
,
Xu
,
W.
,
Deng
,
Y.
,
Zhang
,
C.
,
Zheng
,
H.
,
Yang
,
S.
,
Song
,
Y.
,
Li
,
P.
,
Xu
,
X.
,
Hu
,
Y.
,
Zhang
,
L.
,
Yang
,
Z.
,
Wang
,
S.
, and
Wang
,
Z.
,
2022
, “
Bubble Energy Generator
,”
Sci. Adv.
,
8
(
25
), p.
eabo7698
.10.1126/sciadv.abo7698
117.
Zu
,
G.
,
Wei
,
Y.
,
Sun
,
C.
, and
Yang
,
X.
,
2022
, “
Humidity-Resistant, Durable, Wearable Single-Electrode Triboelectric Nanogenerator for Mechanical Energy Harvesting
,”
J. Mater. Sci.
,
57
(
4
), pp.
2813
2824
.10.1007/s10853-021-06696-2
118.
Abir
,
S. S. H.
,
Sadaf
,
M. U. K.
,
Saha
,
S. K.
,
Touhami
,
A.
,
Lozano
,
K.
, and
Uddin
,
M. J.
,
2021
, “
Nanofiber-Based Substrate for a Triboelectric Nanogenerator: High-Performance Flexible Energy Fiber Mats
,”
ACS Appl. Mater. Interfaces
,
13
(
50
), pp.
60401
60412
.10.1021/acsami.1c17964
119.
Li
,
X.
,
Ning
,
X.
,
Li
,
L.
,
Wang
,
X.
,
Li
,
B.
,
Li
,
J.
,
Yin
,
J.
, and
Guo
,
W.
,
2022
, “
Performance and Power Management of Droplets-Based Electricity Generators
,”
Nano Energy
,
92
, p.
106705
.10.1016/j.nanoen.2021.106705
120.
Zhu
,
X.
,
Luo
,
Y.
,
Liu
,
W.
,
He
,
L.
,
Gao
,
R.
, and
Jia
,
Y.
,
2021
, “
On the Mechanism of High-Voltage Pulsed Fragmentation From Electrical Breakdown Process
,”
Rock Mech. Rock Eng.
,
54
(
9
), pp.
4593
4616
.10.1007/s00603-021-02537-5
121.
Kim
,
S.-R.
,
Yoo
,
J.-H.
, and
Park
,
J.-W.
,
2019
, “
Using Electrospun AgNW/P(VDF-TrFE) Composite Nanofibers to Create Transparent and Wearable Single-Electrode Triboelectric Nanogenerators for Self-Powered Touch Panels
,”
ACS Appl. Mater. Interfaces
,
11
(
16
), pp.
15088
15096
.10.1021/acsami.9b03338
122.
Wang
,
S.
,
Niu
,
S.
,
Yang
,
J.
,
Lin
,
L.
, and
Wang
,
Z. L.
,
2014
, “
Quantitative Measurements of Vibration Amplitude Using a Contact-Mode Freestanding Triboelectric Nanogenerator
,”
ACS Nano
,
8
(
12
), pp.
12004
12013
.10.1021/nn5054365
123.
Yang
,
Y.
,
Mu
,
B.
,
Wang
,
M.
,
Nikitina
,
M. A.
,
Zafari
,
U.
, and
Xiao
,
X.
,
2022
, “
Triboelectric Nanogenerator–Based Wireless Sensing for Food Precise Positioning
,”
Mater. Today Sustain.
,
19
, p.
100220
.10.1016/j.mtsust.2022.100220
124.
Jiao
,
P.
,
Matin Nazar
,
A.
,
Egbe
,
K.-J. I.
,
Barri
,
K.
, and
Alavi
,
A. H.
,
2022
, “
Magnetic Capsulate Triboelectric Nanogenerators
,”
Sci. Rep.
,
12
(
1
), p.
89
.10.1038/s41598-021-04100-2
125.
Zhang
,
W.
,
Gu
,
G.
,
Shang
,
W.
,
Luo
,
H.
,
Wang
,
T.
,
Zhang
,
B.
,
Cui
,
P.
,
Guo
,
J.
,
Yang
,
F.
,
Cheng
,
G.
, and
Du
,
Z.
,
2021
, “
A General Charge Compensation Strategy for Calibrating the Voltage of a Triboelectric Nanogenerator Measured by a Capacitive Circuit
,”
Nano Energy
,
86
, p.
106056
.10.1016/j.nanoen.2021.106056
126.
Luo
,
H.
,
Gu
,
G.
,
Shang
,
W.
,
Zhang
,
W.
,
Wang
,
T.
,
Cui
,
P.
,
Zhang
,
B.
,
Guo
,
J.
,
Cheng
,
G.
, and
Du
,
Z.
,
2021
, “
The Water Droplet With Huge Charge Density Excited by Triboelectric Nanogenerator for Water Sterilization
,”
Nanotechnol.
,
32
(
41
), p.
415404
.10.1088/1361-6528/ac121e
127.
Luo
,
J.
, and
Wang
,
Z. L.
,
2020
, “
Recent Progress of Triboelectric Nanogenerators: From Fundamental Theory to Practical Applications
,”
EcoMat
,
2
(
4
), p.
e12059
.
128.
Shao
,
J.
,
Jiang
,
T.
,
Tang
,
W.
,
Chen
,
X.
,
Xu
,
L.
, and
Wang
,
Z. L.
,
2018
, “
Structural Figure-of-Merits of Triboelectric Nanogenerators at Powering Loads
,”
Nano Energy
,
51
, pp.
688
697
.10.1016/j.nanoen.2018.07.032
129.
Wang
,
S.
,
Xie
,
Y.
,
Niu
,
S.
,
Lin
,
L.
, and
Wang
,
Z. L.
,
2014
, “
Freestanding Triboelectric-Layer-Based Nanogenerators for Harvesting Energy From a Moving Object or Human Motion in Contact and Non-Contact Modes
,”
Adv. Mater.
,
26
(
18
), pp.
2818
2824
.10.1002/adma.201305303
130.
Dharmasena
,
R. D. I. G.
,
Jayawardena
,
K. D. G. I.
,
Mills
,
C. A.
,
Dorey
,
R. A.
, and
Silva
,
S. R. P.
,
2018
, “
A Unified Theoretical Model for Triboelectric Nanogenerators
,”
Nano Energy
,
48
, pp.
391
400
.10.1016/j.nanoen.2018.03.073
131.
Munirathinam
,
K.
,
Kim
,
D.-S.
,
Shanmugasundaram
,
A.
,
Park
,
J.
,
Jeong
,
Y.-J.
, and
Lee
,
D.-W.
,
2022
, “
Flowing Water-Based Tubular Triboelectric Nanogenerators for Sustainable Green Energy Harvesting
,”
Nano Energy
,
102
, p.
107675
.10.1016/j.nanoen.2022.107675
132.
Niu
,
S.
, and
Wang
,
Z. L.
,
2015
, “
Theoretical Systems of Triboelectric Nanogenerators
,”
Nano Energy
,
14
, pp.
161
192
.10.1016/j.nanoen.2014.11.034
133.
Yingyong
,
P.
,
Thainiramit
,
P.
,
Vittayakorn
,
N.
, and
Isarakorn
,
D.
,
2020
, “
Performance and Behavior Analysis of Single-Electrode Triboelectric Nanogenerator for Energy Harvesting Floor Tiles
,”
17th International Conference on Electrical Engineering Computer Telecommunications and Information Technology
, Phuket, Thailand, June 24–27, pp.
514
517
.10.1109/ECTI-CON49241.2020.9157902
134.
Zhou
,
L.
,
Liu
,
D.
,
Zhao
,
Z.
,
Li
,
S.
,
Liu
,
Y.
,
Liu
,
L.
,
Gao
,
Y.
,
Wang
,
Z. L.
, and
Wang
,
J.
,
2020
, “
Simultaneously Enhancing Power Density and Durability of Sliding-Mode Triboelectric Nanogenerator Via Interface Liquid Lubrication
,”
Adv. Energy Mater.
,
10
(
45
), p.
2002920
.10.1002/aenm.202002920
135.
Paosangthong
,
W.
,
Wagih
,
M.
,
Torah
,
R.
, and
Beeby
,
S.
,
2022
, “
Textile-Based Triboelectric Nanogenerator With Alternating Positive and Negative Freestanding Woven Structure for Harvesting Sliding Energy in All Directions
,”
Nano Energy
,
92
, p.
106739
.10.1016/j.nanoen.2021.106739
136.
Zhou
,
T.
,
Zhang
,
C.
,
Han
,
C. B.
,
Fan
,
F. R.
,
Tang
,
W.
, and
Wang
,
Z. L.
,
2014
, “
Woven Structured Triboelectric Nanogenerator for Wearable Devices
,”
ACS Appl. Mater. Interfaces
,
6
(
16
), pp.
14695
14701
.10.1021/am504110u
137.
Han
,
J.
,
Li
,
H.
, and
Fu
,
T.
,
2021
, “
A Pulsed Freestanding Triboelectric Nanogenerator and Power Management Circuit to Harvest Rotation Energy From an Automobile Brake
,”
J. Micromech. Microeng.
,
31
, p.
15007
.10.1088/1361-6439/abc96e
138.
Li
,
W.
,
Dong
,
J.
,
Zhang
,
X.
, and
Fan
,
F. R.
,
2022
, “
Recent Progress in Advanced Units of Triboelectric Electronic Skin
,”
Adv. Mater. Technol.
, p.
2200834
.10.1002/admt.202200834
139.
Ren
,
Z.
,
Wu
,
L.
,
Pang
,
Y.
,
Zhang
,
W.
, and
Yang
,
R.
,
2022
, “
Strategies for Effectively Harvesting Wind Energy Based on Triboelectric Nanogenerators
,”
Nano Energy
,
100
, p.
107522
.10.1016/j.nanoen.2022.107522
140.
Xie
,
Z.
,
Wang
,
Y.
,
Yu
,
M.
,
Yu
,
D.
,
Lv
,
J.
,
Yin
,
J.
,
Liu
,
J.
, and
Wu
,
R.
,
2022
, “
Triboelectric Sensor for Planetary Gear Fault Diagnosis Using Data Enhancement and CNN
,”
Nano Energy
,
103
(Part A), p.
107804
.10.1016/j.nanoen.2022.107804
141.
Gao
,
W.
,
Shao
,
J.
,
Sagoe-Crentsil
,
K.
, and
Duan
,
W.
,
2021
, “
Investigation on Energy Efficiency of Rolling Triboelectric Nanogenerator Using Cylinder-Cylindrical Shell Dynamic Model
,”
Nano Energy
,
80
, p.
105583
.10.1016/j.nanoen.2020.105583
142.
Xie
,
Y.
,
Wang
,
S.
,
Niu
,
S.
,
Lin
,
L.
,
Jing
,
Q.
,
Yang
,
J.
,
Wu
,
Z.
, and
Wang
,
Z. L.
,
2014
, “
Grating-Structured Freestanding Triboelectric-Layer Nanogenerator for Harvesting Mechanical Energy at 85% Total Conversion Efficiency
,”
Adv. Mater.
,
26
(
38
), pp.
6599
6607
.10.1002/adma.201402428
143.
Xia
,
S.-Y.
,
Long
,
Y.
,
Huang
,
Z.
,
Zi
,
Y.
,
Tao
,
L.-Q.
,
Li
,
C.-H.
,
Sun
,
H.
, and
Li
,
J.
,
2022
, “
Laser-İnduced Graphene (LIG)-Based Pressure Sensor and Triboelectric Nanogenerator Towards High-Performance Self-Powered Measurement-Control Combined System
,”
Nano Energy
,
96
, p.
107099
.10.1016/j.nanoen.2022.107099
144.
Guo
,
H.
,
Jia
,
X.
,
Liu
,
L.
,
Cao
,
X.
,
Wang
,
N.
, and
Wang
,
Z. L.
,
2018
, “
Freestanding Triboelectric Nanogenerator Enables Noncontact Motion-Tracking and Positioning
,”
ACS Nano
,
12
(
4
), pp.
3461
3467
.10.1021/acsnano.8b00140
145.
Gu
,
W.
,
Cao
,
J.
,
Dai
,
S.
,
Hu
,
H.
,
Zhong
,
Y.
,
Cheng
,
G.
,
Zhang
,
Z.
, and
Ding
,
J.
,
2021
, “
Self-Powered Slide Tactile Sensor With Wheel-Belt Structures Based on Triboelectric Effect and Electrostatic İnduction
,”
Sens. Actuators A Phys.
,
331
, p.
113022
.10.1016/j.sna.2021.113022
146.
Shen
,
F.
,
Li
,
Z.
,
Guo
,
H.
,
Yang
,
Z.
,
Wu
,
H.
,
Wang
,
M.
,
Luo
,
J.
,
Xie
,
S.
,
Peng
,
Y.
, and
Pu
,
H.
,
2021
, “
Recent Advances Towards Ocean Energy Harvesting and Self-Powered Applications Based on Triboelectric Nanogenerators
,”
Adv. Electron. Mater.
,
7
(
9
), p.
2100277
.10.1002/aelm.202100277
147.
Zhang
,
R.
,
Hummelgård
,
M.
,
Örtegren
,
J.
,
Olsen
,
M.
,
Andersson
,
H.
, and
Olin
,
H.
,
2019
, “
Interaction of the Human Body With Triboelectric Nanogenerators
,”
Nano Energy
,
57
, pp.
279
292
.10.1016/j.nanoen.2018.12.059
148.
Niu
,
S.
,
Liu
,
Y.
,
Chen
,
X.
,
Wang
,
S.
,
Zhou
,
Y. S.
,
Lin
,
L.
,
Xie
,
Y.
, and
Wang
,
Z. L.
,
2015
, “
Theory of Freestanding Triboelectric-Layer-Based Nanogenerators
,”
Nano Energy
,
12
, pp.
760
774
.10.1016/j.nanoen.2015.01.013
149.
Shiwei
,
A.
,
Gao
,
X.
,
Lu
,
C.
,
Yao
,
D.
,
Lu
,
M.
,
Zhang
,
M.
, et al.,
2022
, “
Self-Powered Flexible Sensor Based on Triboelectric Nanogenerators for Noncontact Motion Sensing
,”
IEEE Sens. J.
,
22
(
13
), pp.
12547
59
.10.1109/JSEN.2022.3178210
150.
Samanta
,
G.
,
Shaw
,
T.
, and
Bhattacharjee
,
S.
,
2021
, “
Design of a Switchable THz Antenna Using Graphene and Vanadium-di-Oxide
,”
IEEE Indian Conference on Antennas and Propagation
, Jaipur, Rajasthan, India, Dec. 13–16, pp.
291
294
.10.1109/InCAP52216.2021.9726404
151.
Wang
,
J.
,
Jiang
,
Z.
,
Sun
,
W.
,
Xu
,
X.
,
Han
,
Q.
, and
Chu
,
F.
,
2022
, “
Yoyo-Ball İnspired Triboelectric Nanogenerators for Harvesting Biomechanical Energy
,”
Appl. Energy
,
308
, p.
118322
.10.1016/j.apenergy.2021.118322
152.
Tianyiyi
,
H.
,
2020
, “
Textile-Based Triboelectric Nanogenerators for Healthcare Applications
,”
National University of Singapore
,
Singapore
.
153.
Kim
,
M. P.
,
Um
,
D.-S.
,
Shin
,
Y.-E.
, and
Ko
,
H.
,
2021
, “
High-Performance Triboelectric Devices Via Dielectric Polarization: A Review
,”
Nanoscale Res. Lett.
,
16
(
1
), p.
35
.10.1186/s11671-021-03492-4
154.
Han
,
S. A.
,
Seung
,
W.
,
Kim
,
J. H.
, and
Kim
,
S.-W.
,
2021
, “
Ultrathin Noncontact-Mode Triboelectric Nanogenerator Triggered by Giant Dielectric Material Adaption
,”
ACS Energy Lett.
,
6
(
4
), pp.
1189
1197
.10.1021/acsenergylett.0c02434
155.
Yoon
,
H.-J.
,
Ryu
,
H.
, and
Kim
,
S.-W.
,
2018
, “
Sustainable Powering Triboelectric Nanogenerators: Approaches and the Path Towards Efficient Use
,”
Nano Energy
,
51
, pp.
270
285
.10.1016/j.nanoen.2018.06.075
156.
Liu
,
Z.
,
Huang
,
Y.
,
Shi
,
Y.
,
Tao
,
X.
,
He
,
H.
,
Chen
,
F.
,
Huang
,
Z.-X.
,
Wang
,
Z. L.
,
Chen
,
X.
, and
Qu
,
J.-P.
,
2022
, “
Fabrication of Triboelectric Polymer Films Via Repeated Rheological Forging for Ultrahigh Surface Charge Density
,”
Nat. Commun.
,
13
(
1
), p.
4083
.10.1038/s41467-022-31822-2
157.
Patnam
,
H.
,
Graham
,
S. A.
,
Manchi
,
P.
,
Vasant Paranjape
,
M.
, and
Yu
,
J. S.
,
2022
, “
Eco-Friendly Pectin Polymer Film-Based Triboelectric Nanogenerator for Energy Scavenging
,”
Nanoscale
,
14
(
36
), pp.
13236
13247
.10.1039/D1NR07157B
158.
Supraja
,
P.
,
Kumar
,
R. R.
,
Mishra
,
S.
,
Haranath
,
D.
,
Sankar
,
P. R.
,
Prakash
,
K.
,
Jayarambabu
,
N.
,
Rao
,
T. V.
, and
Kumar
,
K. U.
,
2022
, “
A Simple and Low-Cost Triboelectric Nanogenerator Based on Two Dimensional ZnO Nanosheets and İts Application in Portable Electronics
,”
Sens. Actuators A Phys.
,
335
, p.
113368
.10.1016/j.sna.2022.113368
159.
Yang
,
P.
,
Shi
,
Y.
,
Li
,
S.
,
Tao
,
X.
,
Liu
,
Z.
,
Wang
,
X.
,
Wang
,
Z. L.
, and
Chen
,
X.
,
2022
, “
Monitoring the Degree of Comfort of Shoes In-Motion Using Triboelectric Pressure Sensors With an Ultrawide Detection Range
,”
ACS Nano
,
16
(
3
), pp.
4654
4665
.10.1021/acsnano.1c11321
160.
Karbari
,
S. R.
,
2019
, “
Structural Triboelectric Nanogenerators for Self-Powered Wearable Devices
,”
Adv. Intell. Syst. Comput.
,
698
, pp.
187
197
.10.1007/978-981-13-1819-1_19
161.
Xie
,
Y.
,
Ma
,
Q.
,
Yue
,
B.
,
Chen
,
X.
,
Jin
,
Y.
,
Qi
,
H.
,
Hu
,
Y.
,
Yu
,
W.
,
Dong
,
X.
, and
Jiang
,
H.
,
2023
, “
Triboelectric Nanogenerator Based on Flexible Janus Nanofiber Membrane With Simultaneous High Charge Generation and Charge Capturing Abilities
,”
Chem. Eng. J.
,
452
(Part 2), p.
139393
.10.1016/j.cej.2022.139393
162.
Babu
,
A.
,
Aazem
,
I.
,
Walden
,
R.
,
Bairagi
,
S.
,
Mulvihill
,
D. M.
, and
Pillai
,
S. C.
,
2023
, “
Electrospun Nanofiber Based TENGs for Wearable Electronics and Self-Powered Sensing
,”
Chem. Eng. J.
,
452
(Part 1), p.
139060
.10.1016/j.cej.2022.139060
163.
Yang
,
X.
,
Wu
,
F.
,
Xu
,
C.
,
Yang
,
L.
, and
Yin
,
S.
,
2022
, “
A Flexible High-Output Triboelectric Nanogenerator Based on MXene/CNT/PEDOT Hybrid Film for Self-Powered Wearable Sensors
,”
J. Alloys Compd.
,
928
, p.
167137
.10.1016/j.jallcom.2022.167137
164.
Liu
,
J.
,
Chen
,
J.
,
Dai
,
F.
,
Zhao
,
J.
,
Li
,
S.
,
Shi
,
Y.
,
Li
,
W.
,
Geng
,
L.
,
Ye
,
M.
,
Chen
,
X.
,
Liu
,
Y.
, and
Guo
,
W.
,
2022
, “
Wearable Five-Finger Keyboardless İnput System Based on Silk Fibroin Electronic Skin
,”
Nano Energy
,
103
(Part A), p.
107764
.10.1016/j.nanoen.2022.107764
165.
Hinchet
,
R.
,
Seung
,
W.
, and
Kim
,
S.-W.
,
2015
, “
Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics
,”
ChemSusChem
,
8
(
14
), pp.
2327
2344
.10.1002/cssc.201403481
166.
Zhang
,
Y.
, and
He
,
J.
,
2022
, “
Study on the Triboelectric Performance of Porphyrin- and Phthalocyanine-Crosslinked Enhanced Fluorinated Polyimide Films for Lateral Sliding-Mode Triboelectric Nanogenerator
,”
Mater. Lett.
,
328
, p.
133131
.10.1016/j.matlet.2022.133131
167.
Liu
,
L.
,
Guo
,
X.
, and
Lee
,
C.
,
2021
, “
Promoting Smart Cities Into the 5G Era With Multi-Field Internet of Things (IoT) Applications Powered With Advanced Mechanical Energy Harvesters
,”
Nano Energy
,
88
, p.
106304
.10.1016/j.nanoen.2021.106304
168.
Rahimi Sardo
,
F.
,
Rayegani
,
A.
,
Matin Nazar
,
A.
,
Balaghiinaloo
,
M.
,
Saberian
,
M.
,
Mohsan
,
S. A. H.
,
Alsharif
,
M. H.
, and
Cho
,
H.-S.
,
2022
, “
Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application
,”
Biosensors
,
12
(
9
), p.
697
.10.3390/bios12090697
169.
Chen
,
H.
,
Song
,
Y.
,
Cheng
,
X.
, and
Zhang
,
H.
,
2019
, “
Self-Powered Electronic Skin Based on the Triboelectric Generator
,”
Nano Energy
,
56
, pp.
252
268
.10.1016/j.nanoen.2018.11.061
170.
Yuan
,
Z.
,
Zhou
,
T.
,
Yin
,
Y.
,
Cao
,
R.
,
Li
,
C.
, and
Wang
,
Z. L.
,
2017
, “
Transparent and Flexible Triboelectric Sensing Array for Touch Security Applications
,”
ACS Nano
,
11
(
8
), pp.
8364
8369
.10.1021/acsnano.7b03680
171.
Yin
,
R.
,
Wang
,
D.
,
Zhao
,
S.
,
Lou
,
Z.
, and
Shen
,
G.
,
2021
, “
Wearable Sensors-Enabled Human–Machine Interaction Systems: From Design to Application
,”
Adv. Funct. Mater.
,
31
(
11
), p.
2008936
.10.1002/adfm.202008936
172.
Chandrasekaran
,
S.
,
Bowen
,
C.
,
Roscow
,
J.
,
Zhang
,
Y.
,
Dang
,
D. K.
,
Kim
,
E. J.
,
Misra
,
R. D. K.
,
Deng
,
L.
,
Chung
,
J. S.
, and
Hur
,
S. H.
,
2019
, “
Micro-Scale to Nano-Scale Generators for Energy Harvesting: Self Powered Piezoelectric, Triboelectric and Hybrid Devices
,”
Phys. Rep.
,
792
, pp.
1
33
.10.1016/j.physrep.2018.11.001
173.
Li
,
J.
,
Wu
,
C.
,
Dharmasena
,
I.
,
Ni
,
X.
,
Wang
,
Z.
,
Shen
,
H.
,
Huang
,
S.-L.
, and
Ding
,
W.
,
2020
, “
Triboelectric Nanogenerators Enabled İnternet of Things: A Survey
,”
Intell. Converg. Networks
,
1
(
2
), pp.
115
141
.10.23919/ICN.2020.0008
174.
Luo
,
J.
, and
Wang
,
Z. L.
,
2019
, “
Recent Advances in Triboelectric Nanogenerator Based Self-Charging Power Systems
,”
Energy Storage Mater.
,
23
, pp.
617
628
.10.1016/j.ensm.2019.03.009
175.
Choi
,
Y. S.
,
Kim
,
S.-W.
, and
Kar-Narayan
,
S.
,
2021
, “
Materials-Related Strategies for Highly Efficient Triboelectric Energy Generators
,”
Adv. Energy Mater.
,
11
(
7
), p.
2003802
.10.1002/aenm.202003802
176.
Cheng
,
G.
,
Zheng
,
H.
,
Yang
,
F.
,
Zhao
,
L.
,
Zheng
,
M.
,
Yang
,
J.
,
Qin
,
H.
,
Du
,
Z.
, and
Wang
,
Z. L.
,
2018
, “
Managing and Maximizing the Output Power of a Triboelectric Nanogenerator by Controlled Tip–Electrode Air-Discharging and Application for UV Sensing
,”
Nano Energy
,
44
, pp.
208
216
.10.1016/j.nanoen.2017.11.062
177.
Yan
,
Z.
,
Wang
,
L.
,
Xia
,
Y.
,
Qiu
,
R.
,
Liu
,
W.
,
Wu
,
M.
,
Zhu
,
Y.
,
Zhu
,
S.
,
Jia
,
C.
,
Zhu
,
M.
,
Cao
,
R.
,
Li
,
Z.
, and
Wang
,
X.
,
2021
, “
Flexible High-Resolution Triboelectric Sensor Array Based on Patterned Laser-Induced Graphene for Self-Powered Real-Time Tactile Sensing
,”
Adv. Funct. Mater.
,
31
(
23
), p.
2100709
.10.1002/adfm.202100709
178.
Wu
,
M.
,
Wang
,
X.
,
Xia
,
Y.
,
Zhu
,
Y.
,
Zhu
,
S.
,
Jia
,
C.
,
Guo
,
W.
,
Li
,
Q.
, and
Yan
,
Z.
,
2022
, “
Stretchable Freezing-Tolerant Triboelectric Nanogenerator and Strain Sensor Based on Transparent, Long-Term Stable, and Highly Conductive Gelatin-Based Organohydrogel
,”
Nano Energy
,
95
, p.
106967
.10.1016/j.nanoen.2022.106967
179.
Bai
,
Z.
,
Xu
,
Y.
,
Lee
,
C.
, and
Guo
,
J.
,
2021
, “
Autonomously Adhesive, Stretchable, and Transparent Solid-State Polyionic Triboelectric Patch for Wearable Power Source and Tactile Sensor
,”
Adv. Funct. Mater.
,
31
(
37
), p.
2104365
.10.1002/adfm.202104365
180.
Wang
,
L.
,
Liu
,
W.
,
Yan
,
Z.
,
Wang
,
F.
, and
Wang
,
X.
,
2021
, “
Stretchable and Shape-Adaptable Triboelectric Nanogenerator Based on Biocompatible Liquid Electrolyte for Biomechanical Energy Harvesting and Wearable Human–Machine Interaction
,”
Adv. Funct. Mater.
,
31
(
7
), p.
2007221
.10.1002/adfm.202007221
181.
Wu
,
J.
,
Wang
,
X.
,
He
,
J.
,
Li
,
Z.
, and
Li
,
L.
,
2021
, “
Synthesis of Fluorinated Polyimide Towards a Transparent Triboelectric Nanogenerator Applied on Screen Surface
,”
J. Mater. Chem. A
,
9
(
10
), pp.
6583
6590
.10.1039/D0TA11156B
182.
Hossain
,
G.
,
Rahman
,
M.
,
Hossain
,
I. Z.
, and
Khan
,
A.
,
2022
, “
Wearable Socks With Single Electrode Triboelectric Textile Sensors for Monitoring Footsteps
,”
Sens. Actuators A Phys.
,
333
, p.
113316
.10.1016/j.sna.2021.113316
183.
Qu
,
X.
,
Liu
,
Y.
,
Liu
,
Z.
, and
Li
,
Z.
,
2021
, “
Assistive Devices for the People With Disabilities Enabled by Triboelectric Nanogenerators
,”
J. Phys. Mater.
,
4
, p.
34015
.10.1088/2515-7639/ac0092
184.
Wang
,
K.
,
Zhang
,
Y.
,
Luo
,
X.
,
Zhu
,
L.
, and
Wang
,
Z. L.
,
2022
, “
Active Deformable and Flexible Triboelectric Nanogenerator Based on Super-Light Clay
,”
ACS Appl. Electron. Mater.
,
4
(
9
), pp.
4764
4771
.10.1021/acsaelm.2c00985
185.
Han
,
J.
,
Xu
,
N.
,
Liang
,
Y.
,
Ding
,
M.
,
Zhai
,
J.
,
Sun
,
Q.
, and
Wang
,
Z. L.
,
2021
, “
Paper-Based Triboelectric Nanogenerators and Their Applications: A Review
,”
Beilstein J. Nanotechnol.
,
12
, pp.
151
171
.10.3762/bjnano.12.12
186.
Zhong
,
Y.
,
Yan
,
J.
,
Mei
,
N.
, and
Huang
,
C.
,
2022
, “
Research on Wave Energy Collection Based on Swing Ship Triboelectric Nanogenerator
,”
Energy Rep.
,
8
(Supplement 12), pp.
135
145
.10.1016/j.egyr.2022.10.073
187.
Lee
,
J.
,
Shen
,
F.
,
Miao
,
S.
,
Ryu
,
G. H.
,
Im
,
B.
,
Kim
,
D. G.
,
An
,
G.-H.
, and
Cho
,
Y.
,
2022
, “
Enhanced Spontaneous Self-Charging Through Scalable Template-Free Surface Engineering at Building Block Fiber Scale for Wearable Electronics
,”
Nano Energy
,
104
(Part A), p.
107891
.10.1016/j.nanoen.2022.107891
188.
Dong
,
X.
,
Liu
,
Z.
,
Yang
,
P.
, and
Chen
,
X.
,
2022
, “
Harvesting Wind Energy Based on Triboelectric Nanogenerators
,”
Nanoenergy Adv.
,
2
(
3
), pp.
245
270
.10.3390/nanoenergyadv2030013
189.
Jin
,
L.
,
Zhang
,
B.
,
Zhang
,
L.
, and
Yang
,
W.
,
2019
, “
Nanogenerator as New Energy Technology for Self-Powered İntelligent Transportation System
,”
Nano Energy
,
66
, p.
104086
.10.1016/j.nanoen.2019.104086
190.
Kim
,
W.
,
Bhatia
,
D.
,
Jeong
,
S.
, and
Choi
,
D.
,
2019
, “
Mechanical Energy Conversion Systems for Triboelectric Nanogenerators: Kinematic and Vibrational Designs
,”
Nano Energy
,
56
, pp.
307
321
.10.1016/j.nanoen.2018.11.056
191.
Tan
,
J.
,
Tian
,
P.
,
Sun
,
M.
,
Wang
,
H.
,
Sun
,
N.
,
Chen
,
G.
,
Song
,
Y.
,
Jiang
,
D.
,
Jiang
,
H.
, and
Xu
,
M.
,
2022
, “
A Transparent Electrowetting-on-Dielectric Device Driven by Triboelectric Nanogenerator for Extremely Fast Anti-Fogging
,”
Nano Energy
,
92
, p.
106697
.10.1016/j.nanoen.2021.106697
192.
Lone
,
S. A.
,
Lim
,
K. C.
,
Kaswan
,
K.
,
Chatterjee
,
S.
,
Fan
,
K.-P.
,
Choi
,
D.
,
Lee
,
S.
,
Zhang
,
H.
,
Cheng
,
J.
, and
Lin
,
Z.-H.
,
2022
, “
Recent Advancements for İmproving the Performance of Triboelectric Nanogenerator Devices
,”
Nano Energy
,
99
, p.
107318
.10.1016/j.nanoen.2022.107318
193.
Wang
,
Y.
,
Jin
,
X.
,
Wang
,
W.
,
Niu
,
J.
,
Zhu
,
Z.
, and
Lin
,
T.
,
2021
, “
Efficient Triboelectric Nanogenerator (TENG) Output Management for Improving Charge Density and Reducing Charge Loss
,”
ACS Appl. Electron. Mater.
,
3
(
2
), pp.
532
549
.10.1021/acsaelm.0c00890
194.
Li
,
X.
,
Zhang
,
C.
,
Gao
,
Y.
,
Zhao
,
Z.
,
Hu
,
Y.
,
Yang
,
O.
,
Liu
,
L.
,
Zhou
,
L.
,
Wang
,
J.
, and
Wang
,
Z. L.
,
2022
, “
A Highly Efficient Constant-Voltage Triboelectric Nanogenerator
,”
Energy Environ. Sci.
,
15
(
3
), pp.
1334
1345
.10.1039/D1EE03961J
195.
Sun
,
J.
,
Schütz
,
U.
,
Tu
,
K.
,
Koch
,
S. M.
,
Roman
,
G.
,
Stucki
,
S.
,
Chen
,
F.
,
Ding
,
Y.
,
Yan
,
W.
,
Wu
,
C.
,
Stricker
,
L.
,
Burgert
,
I.
,
Wang
,
Z. L.
,
Hegemann
,
D.
, and
Panzarasa
,
G.
,
2022
, “
Scalable and Sustainable Wood for Efficient Mechanical Energy Conversion in Buildings Via Triboelectric Effects
,”
Nano Energy
,
102
, p.
107670
.10.1016/j.nanoen.2022.107670
196.
Xie
,
L.
,
Yin
,
L.
,
Liu
,
Y.
,
Liu
,
H.
,
Lu
,
B.
,
Zhao
,
C.
,
Khattab
,
T. A.
,
Wen
,
Z.
, and
Sun
,
X.
,
2022
, “
Interface Engineering for Efficient Raindrop Solar Cell
,”
ACS Nano
,
16
(
4
), pp.
5292
5302
.10.1021/acsnano.1c10211
197.
Lin
,
L.
,
Wang
,
S.
,
Xie
,
Y.
,
Jing
,
Q.
,
Niu
,
S.
,
Hu
,
Y.
, and
Wang
,
Z. L.
,
2013
, “
Segmentally Structured Disk Triboelectric Nanogenerator for Harvesting Rotational Mechanical Energy
,”
Nano Lett.
,
13
(
6
), pp.
2916
2923
.10.1021/nl4013002
198.
Lin
,
L.
,
Wang
,
S.
,
Niu
,
S.
,
Liu
,
C.
,
Xie
,
Y.
, and
Wang
,
Z. L.
,
2014
, “
Noncontact Free-Rotating Disk Triboelectric Nanogenerator as a Sustainable Energy Harvester and Self-Powered Mechanical Sensor
,”
ACS Appl. Mater. Interfaces
,
6
(
4
), pp.
3031
3038
.10.1021/am405637s
199.
Han
,
J.
,
Feng
,
Y.
,
Chen
,
P.
,
Liang
,
X.
,
Pang
,
H.
,
Jiang
,
T.
, and
Wang
,
Z. L.
,
2022
, “
Wind-Driven Soft-Contact Rotary Triboelectric Nanogenerator Based on Rabbit Fur With High Performance and Durability for Smart Farming
,”
Adv. Funct. Mater.
,
32
(
2
), p.
2108580
.10.1002/adfm.202108580
200.
Li
,
X. H.
,
Han
,
C. B.
,
Jiang
,
T.
,
Zhang
,
C.
, and
Wang
,
Z. L.
,
2016
, “
A Ball-Bearing Structured Triboelectric Nanogenerator for Nondestructive Damage and Rotating Speed Measurement
,”
Nanotechnology
,
27
(
8
), p.
085401
.10.1088/0957-4484/27/8/085401
201.
Choi
,
D.
,
Sung
,
T.
, and
Kwon
,
J.-Y.
,
2018
, “
A Self-Powered Smart Roller-Bearing Based on a Triboelectric Nanogenerator for Measurement of Rotation Movement
,”
Adv. Mater. Technol.
,
3
(
12
), p.
1800219
.10.1002/admt.201800219
202.
Han
,
Q.
,
Ding
,
Z.
,
Qin
,
Z.
,
Wang
,
T.
,
Xu
,
X.
, and
Chu
,
F.
,
2020
, “
A Triboelectric Rolling Ball Bearing With Self-Powering and Self-Sensing Capabilities
,”
Nano Energy
,
67
, p.
104277
.10.1016/j.nanoen.2019.104277
203.
Han
,
Q.
,
Jiang
,
Z.
,
Xu
,
X.
,
Ding
,
Z.
, and
Chu
,
F.
,
2022
, “
Self-Powered Fault Diagnosis of Rolling Bearings Based on Triboelectric Effect
,”
Mech. Syst. Signal Process.
,
166
, p.
108382
.10.1016/j.ymssp.2021.108382
204.
Cheng
,
G.
,
Lin
,
Z.-H.
,
Du
,
Z.
, and
Wang
,
Z. L.
,
2014
, “
Increase Output Energy and Operation Frequency of a Triboelectric Nanogenerator by Two Grounded Electrodes Approach
,”
Adv. Funct. Mater.
,
24
(
19
), pp.
2892
2898
.10.1002/adfm.201303659
205.
Zhang
,
Y.
,
Wang
,
T.
,
Luo
,
A.
,
Hu
,
Y.
,
Li
,
X.
, and
Wang
,
F.
,
2018
, “
Micro Electrostatic Energy Harvester With Both Broad Bandwidth and High Normalized Power Density
,”
Appl. Energy
,
212
, pp.
362
371
.10.1016/j.apenergy.2017.12.053
206.
Dragunov
,
V. P.
,
Ostertak
,
D. I.
, and
Sinitskiy
,
R. E.
,
2020
, “
New Modifications of a Bennet Doubler Circuit-Based Electrostatic Vibrational Energy Harvester
,”
Sens. Actuators A Phys.
,
302
, p.
111812
.10.1016/j.sna.2019.111812
207.
Erturun
,
U.
,
Eisape
,
A. A.
,
Kang
,
S. H.
, and
West
,
J. E.
,
2021
, “
Energy Harvester Using Piezoelectric Nanogenerator and Electrostatic Generator
,”
Appl. Phys. Lett.
,
118
, p.
63902
.10.1063/5.0030302
208.
Honma
,
H.
,
Tohyama
,
Y.
,
Mitsuya
,
H.
,
Hashiguchi
,
G.
,
Fujita
,
H.
, and
Toshiyoshi
,
H.
,
2021
, “
Power Enhancement of MEMS Vibrational Electrostatic Energy Harvester by Stray Capacitance Reduction
,”
J. Micromech. Microeng.
,
31
(
12
), p.
125008
.10.1088/1361-6439/ac2e46
209.
Miao
,
G.
,
Fang
,
S.
,
Wang
,
S.
, and
Zhou
,
S.
,
2022
, “
A Low-Frequency Rotational Electromagnetic Energy Harvester Using a Magnetic Plucking Mechanism
,”
Appl. Energy
,
305
, p.
117838
.10.1016/j.apenergy.2021.117838
210.
Zhao
,
L.-C.
,
Zou
,
H.-X.
,
Yan
,
G.
,
Liu
,
F.-R.
,
Tan
,
T.
,
Zhang
,
W.-M.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2019
, “
A Water-Proof Magnetically Coupled Piezoelectric-Electromagnetic Hybrid Wind Energy Harvester
,”
Appl. Energy
,
239
, pp.
735
746
.10.1016/j.apenergy.2019.02.006
211.
Zhang
,
Y.
,
Luo
,
A.
,
Wang
,
Y.
,
Dai
,
X.
,
Lu
,
Y.
, and
Wang
,
F.
,
2020
, “
Rotational Electromagnetic Energy Harvester for Human Motion Application at Low Frequency
,”
Appl. Phys. Lett.
,
116
, p.
53902
.10.1063/1.5142575
212.
Lv
,
H.
,
Yang
,
Z.
,
Liu
,
B.
,
Wu
,
G.
,
Lou
,
Z.
,
Fei
,
B.
, and
Wu
,
R.
,
2021
, “
A Flexible Electromagnetic Wave-Electricity Harvester
,”
Nat. Commun.
,
12
(
1
), p.
834
.10.1038/s41467-021-21103-9
213.
Qian
,
F.
,
Hajj
,
M. R.
, and
Zuo
,
L.
,
2020
, “
Bio-İnspired bi-Stable Piezoelectric Harvester for Broadband Vibration Energy Harvesting
,”
Energy Convers. Manag.
,
222
, p.
113174
.10.1016/j.enconman.2020.113174
214.
Zou
,
H.-X.
,
Li
,
M.
,
Zhao
,
L.-C.
,
Gao
,
Q.-H.
,
Wei
,
K.-X.
,
Zuo
,
L.
,
Qian
,
F.
, and
Zhang
,
W.-M.
,
2021
, “
A Magnetically Coupled Bistable Piezoelectric Harvester for Underwater Energy Harvesting
,”
Energy
,
217
, p.
119429
.10.1016/j.energy.2020.119429
215.
Yang
,
F.
,
Gao
,
M.
,
Wang
,
P.
,
Zuo
,
J.
,
Dai
,
J.
, and
Cong
,
J.
,
2021
, “
Efficient Piezoelectric Harvester for Random Broadband Vibration of Rail
,”
Energy
,
218
, p.
119559
.10.1016/j.energy.2020.119559
216.
Machado
,
L. Q.
,
Yurchenko
,
D.
,
Wang
,
J.
,
Clementi
,
G.
,
Margueron
,
S.
, and
Bartasyte
,
A.
,
2021
, “
Multi-Dimensional Constrained Energy Optimization of a Piezoelectric Harvester for E-Gadgets
,”
IScience
,
24
(
7
), p.
102749
.10.1016/j.isci.2021.102749
217.
Zhao
,
C.
,
Yang
,
Y.
,
Upadrashta
,
D.
, and
Zhao
,
L.
,
2021
, “
Design, Modeling and Experimental Validation of a Low-Frequency Cantilever Triboelectric Energy Harvester
,”
Energy
,
214
, p.
118885
.10.1016/j.energy.2020.118885
218.
Hossain
,
N. A.
,
Yamomo
,
G. G.
,
Willing
,
R.
, and
Towfighian
,
S.
,
2021
, “
Characterization of a Packaged Triboelectric Harvester Under Simulated Gait Loading for Total Knee Replacement
,”
IEEE/ASME Trans Mechatronics
,
26
(
6
), pp.
2967
2976
.10.1109/TMECH.2021.3049327
219.
Liu
,
L.
,
Shi
,
Q.
,
Ho
,
J. S.
, and
Lee
,
C.
,
2019
, “
Study of Thin Film Blue Energy Harvester Based on Triboelectric Nanogenerator and Seashore IoT Applications
,”
Nano Energy
,
66
, p.
104167
.10.1016/j.nanoen.2019.104167
220.
Zhang
,
C.
,
Mo
,
J.
,
Fu
,
Q.
,
Liu
,
Y.
,
Wang
,
S.
, and
Nie
,
S.
,
2021
, “
Wood-Cellulose-Fiber-Based Functional Materials for Triboelectric Nanogenerators
,”
Nano Energy
,
81
, p.
105637
.10.1016/j.nanoen.2020.105637
221.
Cheng
,
T.
,
Gao
,
Q.
, and
Wang
,
Z. L.
,
2019
, “
The Current Development and Future Outlook of Triboelectric Nanogenerators: A Survey of Literature
,”
Adv. Mater. Technol.
,
4
(
3
), p.
1800588
.10.1002/admt.201800588
222.
Zhu
,
G.
,
Peng
,
B.
,
Chen
,
J.
,
Jing
,
Q.
, and
Lin Wang
,
Z.
,
2015
, “
Triboelectric Nanogenerators as a New Energy Technology: From Fundamentals, Devices, to Applications
,”
Nano Energy
,
14
, pp.
126
138
.10.1016/j.nanoen.2014.11.050
223.
Du
,
Y.
,
Tang
,
Q.
,
He
,
W.
,
Liu
,
W.
,
Wang
,
Z.
,
Wu
,
H.
,
Li
,
G.
,
Guo
,
H.
,
Li
,
Z.
,
Peng
,
Y.
, and
Hu
,
C.
,
2021
, “
Harvesting Ambient Mechanical Energy by Multiple Mode Triboelectric Nanogenerator With Charge Excitation for Self-Powered Freight Train Monitoring
,”
Nano Energy
,
90
(Part A), p.
106543
.10.1016/j.nanoen.2021.106543
224.
Huang
,
L.-B.
,
Bai
,
G.
,
Wong
,
M.-C.
,
Yang
,
Z.
,
Xu
,
W.
, and
Hao
,
J.
,
2016
, “
Magnetic-Assisted Noncontact Triboelectric Nanogenerator Converting Mechanical Energy Into Electricity and Light Emissions
,”
Adv. Mater.
,
28
(
14
), pp.
2744
2751
.10.1002/adma.201505839
225.
Liu
,
Y.
,
Han
,
R.
,
Li
,
L.
,
Zhou
,
Z.
,
Chen
,
G.
, and
Li
,
Q.
,
2020
, “
Tuning of Highly Dielectric Calcium Copper Titanate Nanowires To Enhance the Output Performance of a Triboelectric Nanogenerator
,”
ACS Appl. Electron. Mater.
,
2
(
6
), pp.
1709
1715
.10.1021/acsaelm.0c00249
226.
Wang
,
W.
,
Zhang
,
J.
,
Zhang
,
Y.
,
Chen
,
F.
,
Wang
,
H.
, and
Wu
,
M.
,
2020
, “
Remarkably Enhanced Hybrid Piezo/Triboelectric Nanogenerator Via Rational Modulation of Piezoelectric and Dielectric Properties for Self-Powered Electronics
,”
Appl. Phys. Lett.
,
116
, p.
23901
.10.1063/1.5134100
227.
Tantraviwat
,
D.
,
Ngamyingyoud
,
M.
,
Sripumkhai
,
W.
,
Pattamang
,
P.
,
Rujijanagul
,
G.
, and
Inceesungvorn
,
B.
,
2021
, “
Tuning the Dielectric Constant and Surface Engineering of a BaTiO3/Porous PDMS Composite Film for Enhanced Triboelectric Nanogenerator Output Performance
,”
ACS Omega
,
6
(
44
), pp.
29765
29773
.10.1021/acsomega.1c04222
228.
Paria
,
S.
,
Si
,
S. K.
,
Karan
,
S. K.
,
Das
,
A. K.
,
Maitra
,
A.
,
Bera
,
R.
,
Halder
,
L.
,
Bera
,
A.
,
De
,
A.
, and
Khatua
,
B. B.
,
2019
, “
A Strategy to Develop Highly Efficient TENGs Through the Dielectric Constant, İnternal Resistance Optimization, and Surface Modification
,”
J. Mater. Chem. A
,
7
(
8
), pp.
3979
3991
.10.1039/C8TA11229K
229.
Shao
,
Y.
,
Feng
,
C.
,
Deng
,
B.
,
Yin
,
B.
, and
Yang
,
M.
,
2019
, “
Facile Method to Enhance Output Performance of Bacterial Cellulose Nanofiber Based Triboelectric Nanogenerator by Controlling Micro-Nano Structure and Dielectric Constant
,”
Nano Energy
,
62
, pp.
620
627
.10.1016/j.nanoen.2019.05.078
230.
Gao
,
S.
,
Wang
,
R.
,
Ma
,
C.
,
Chen
,
Z.
,
Wang
,
Y.
,
Wu
,
M.
,
Tang
,
Z.
,
Bao
,
N.
,
Ding
,
D.
,
Wu
,
W.
,
Fan
,
F.
, and
Wu
,
W.
,
2019
, “
Wearable High-Dielectric-Constant Polymers With Core–Shell Liquid Metal İnclusions for Biomechanical Energy Harvesting and a Self-Powered User İnterface
,”
J. Mater. Chem. A
,
7
(
12
), pp.
7109
7117
.10.1039/C9TA01249D
231.
Zhang
,
Y.
,
Wu
,
J.
,
Cui
,
S.
,
Wei
,
W.
,
Chen
,
W.
,
Pang
,
R.
,
Wu
,
Z.
, and
Mi
,
L.
,
2020
, “
Organosulfonate Counteranions—A Trapped Coordination Polymer as a High-Output Triboelectric Nanogenerator Material for Self-Powered Anticorrosion
,”
Chem A Eur. J.
,
26
(
3
), pp.
584
591
.10.1002/chem.201904873
232.
Zhao
,
Z.
,
Zhou
,
L.
,
Li
,
S.
,
Liu
,
D.
,
Li
,
Y.
,
Gao
,
Y.
,
Liu
,
Y.
,
Dai
,
Y.
,
Wang
,
J.
, and
Wang
,
Z. L.
,
2021
, “
Selection Rules of Triboelectric Materials for Direct-Current Triboelectric Nanogenerator
,”
Nat. Commun.
,
12
(
1
), p.
4686
.10.1038/s41467-021-25046-z
233.
Wang
,
H.
,
Han
,
M.
,
Song
,
Y.
, and
Zhang
,
H.
,
2021
, “
Design, Manufacturing and Applications of Wearable Triboelectric Nanogenerators
,”
Nano Energy
,
81
, p.
105627
.10.1016/j.nanoen.2020.105627
234.
Jiang
,
W.
,
Li
,
H.
,
Liu
,
Z.
,
Li
,
Z.
,
Tian
,
J.
,
Shi
,
B.
,
Zou
,
Y.
,
Ouyang
,
H.
,
Zhao
,
C.
,
Zhao
,
L.
,
Sun
,
R.
,
Zheng
,
H.
,
Fan
,
Y.
,
Wang
,
Z. L.
, and
Li
,
Z.
,
2018
, “
Fully Bioabsorbable Natural-Materials-Based Triboelectric Nanogenerators
,”
Adv. Mater.
,
30
(
32
), p.
1801895
.10.1002/adma.201801895
235.
Zou
,
Y.
,
Raveendran
,
V.
, and
Chen
,
J.
,
2020
, “
Wearable Triboelectric Nanogenerators for Biomechanical Energy Harvesting
,”
Nano Energy
,
77
, p.
105303
.10.1016/j.nanoen.2020.105303
236.
Dagdeviren
,
C.
,
Li
,
Z.
, and
Wang
,
Z. L.
,
2017
, “
Energy Harvesting From the Animal/Human Body for Self-Powered Electronics
,”
Annu. Rev. Biomed. Eng.
,
19
(
1
), pp.
85
108
.10.1146/annurev-bioeng-071516-044517
237.
Khandelwal
,
G.
,
Maria Joseph Raj
,
N. P.
, and
Kim
,
S.-J.
,
2021
, “
Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators
,”
Adv. Energy Mater.
,
11
(
33
), p.
2101170
.10.1002/aenm.202101170
238.
Kim
,
Y. J.
,
Lee
,
J.
,
Park
,
S.
,
Park
,
C. C.
,
Park
,
C. C.
, and
Choi
,
H.-J.
,
2017
, “
Effect of the Relative Permittivity of Oxides on the Performance of Triboelectric Nanogenerators
,”
RSC Adv.
,
7
(
78
), pp.
49368
49373
.10.1039/C7RA07274K
239.
Zi
,
Y.
,
Niu
,
S.
,
Wang
,
J.
,
Wen
,
Z.
,
Tang
,
W.
, and
Wang
,
Z. L.
,
2015
, “
Standards and Figure-of-Merits for Quantifying the Performance of Triboelectric Nanogenerators
,”
Nat. Commun.
,
6
(
1
), p.
8376
.10.1038/ncomms9376
240.
Seol
,
M.
,
Kim
,
S.
,
Cho
,
Y.
,
Byun
,
K.-E.
,
Kim
,
H.
,
Kim
,
J.
,
Kim
,
S. K.
,
Kim
,
S.-W.
,
Shin
,
H.-J.
, and
Park
,
S.
,
2018
, “
Triboelectric Series of 2D Layered Materials
,”
Adv. Mater.
,
30
(
39
), p.
1801210
.10.1002/adma.201801210
241.
Dharmasena
,
R. D. I. G.
, and
Silva
,
S. R. P.
,
2019
, “
Towards Optimized Triboelectric Nanogenerators
,”
Nano Energy
,
62
, pp.
530
549
.10.1016/j.nanoen.2019.05.057
242.
Chen
,
S.-N.
,
Huang
,
M.-Z.
,
Lin
,
Z.-H.
, and
Liu
,
C.-P.
,
2019
, “
Enhancing Charge Transfer for ZnO Nanorods Based Triboelectric Nanogenerators Through Ga Doping
,”
Nano Energy
,
65
, p.
104069
.10.1016/j.nanoen.2019.104069
243.
Li
,
M.
,
Lu
,
H.-W.
,
Wang
,
S.-W.
,
Li
,
R.-P.
,
Chen
,
J.-Y.
,
Chuang
,
W.-S.
,
Yang
,
F.-S.
,
Lin
,
Y.-F.
,
Chen
,
C.-Y.
, and
Lai
,
Y.-C.
,
2022
, “
Filling the Gap Between Topological İnsulator Nanomaterials and Triboelectric Nanogenerators
,”
Nat. Commun.
,
13
(
1
), p.
938
.10.1038/s41467-022-28575-3
244.
Niu
,
S.
,
Wang
,
S.
,
Liu
,
Y.
,
Zhou
,
Y. S.
,
Lin
,
L.
,
Hu
,
Y.
,
Pradel
,
K. C.
, and
Wang
,
Z. L.
,
2014
, “
A Theoretical Study of Grating Structured Triboelectric Nanogenerators
,”
Energy Environ. Sci.
,
7
(
7
), pp.
2339
2349
.10.1039/C4EE00498A
245.
Cui
,
X.
,
Zhang
,
Y. Y.
,
Hu
,
G.
,
Zhang
,
L.
, and
Zhang
,
Y. Y.
,
2020
, “
Dynamical Charge Transfer Model for High Surface Charge Density Triboelectric Nanogenerators
,”
Nano Energy
,
70
, p.
104513
.10.1016/j.nanoen.2020.104513
246.
Zhang
,
B.
,
Tian
,
G.
,
Xiong
,
D.
,
Yang
,
T.
,
Chun
,
F.
,
Zhong
,
S.
,
Lin
,
Z.
,
Li
,
W.
, and
Yang
,
W.
,
2021
, “
Understanding the Percolation Effect in Triboelectric Nanogenerator With Conductive Intermediate Layer
,”
Research
,
2021
, pp.
1
8
.10.34133/2021/7189376
247.
Chun
,
J.
,
Ye
,
B. U.
,
Lee
,
J. W.
,
Choi
,
D.
,
Kang
,
C.-Y.
,
Kim
,
S.-W.
,
Wang
,
Z. L.
, and
Baik
,
J. M.
,
2016
, “
Boosted Output Performance of Triboelectric Nanogenerator Via Electric Double Layer Effect
,”
Nat. Commun.
,
7
(
1
), p.
12985
.10.1038/ncomms12985
248.
Liu
,
Z.
,
Li
,
H.
,
Shi
,
B.
,
Fan
,
Y.
,
Wang
,
Z. L.
, and
Li
,
Z.
,
2019
, “
Wearable and Implantable Triboelectric Nanogenerators
,”
Adv. Funct. Mater.
,
29
(
20
), p.
1808820
.10.1002/adfm.201808820
249.
Cui
,
N.
,
Gu
,
L.
,
Lei
,
Y.
,
Liu
,
J.
,
Qin
,
Y.
,
Ma
,
X.
,
Hao
,
Y.
, and
Wang
,
Z. L.
,
2016
, “
Dynamic Behavior of the Triboelectric Charges and Structural Optimization of the Friction Layer for a Triboelectric Nanogenerator
,”
ACS Nano
,
10
(
6
), pp.
6131
6138
.10.1021/acsnano.6b02076
250.
Tang
,
N.
,
Zheng
,
Y.
,
Yuan
,
M.
,
Jin
,
K.
, and
Haick
,
H.
,
2021
, “
High-Performance Polyimide-Based Water–Solid Triboelectric Nanogenerator for Hydropower Harvesting
,”
ACS Appl. Mater. Interfaces
,
13
(
27
), pp.
32106
32114
.10.1021/acsami.1c06330
251.
Wang
,
H.
,
Sakamoto
,
H.
,
Asai
,
H.
,
Zhang
,
J.-H.
,
Meboso
,
T.
,
Uchiyama
,
Y.
,
Kobayashi
,
E.
,
Takamura
,
E.
, and
Suye
,
S.-I.
,
2021
, “
An All-Fibrous Triboelectric Nanogenerator With Enhanced Outputs Depended on the Polystyrene Charge Storage Layer
,”
Nano Energy
,
90
(Part A), p.
106515
.10.1016/j.nanoen.2021.106515
252.
Wang
,
Z. L.
,
2013
, “
Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors
,”
ACS Nano
,
7
(
11
), pp.
9533
9557
.10.1021/nn404614z
253.
Nurmakanov
,
Y.
,
Kalimuldina
,
G.
,
Nauryzbayev
,
G.
,
Adair
,
D.
, and
Bakenov
,
Z.
,
2021
, “
Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators
,”
Nanoscale Res. Lett.
,
16
(
1
), p.
122
.10.1186/s11671-021-03578-z
254.
Jiao
,
P.
,
2021
, “
Emerging Artificial İntelligence in Piezoelectric and Triboelectric Nanogenerators
,”
Nano Energy
,
88
, p.
106227
.10.1016/j.nanoen.2021.106227
255.
Dong
,
K.
,
Peng
,
X.
, and
Wang
,
Z. L.
,
2020
, “
Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence
,”
Adv. Mater.
,
32
(
5
), p.
1902549
.10.1002/adma.201902549
256.
Paosangthong
,
W.
,
Torah
,
R.
, and
Beeby
,
S.
,
2019
, “
Recent Progress on Textile-Based Triboelectric Nanogenerators
,”
Nano Energy
,
55
, pp.
401
423
.10.1016/j.nanoen.2018.10.036
257.
Kim
,
D. W.
,
Lee
,
J. H.
,
Kim
,
J. K.
, and
Jeong
,
U.
,
2020
, “
Material Aspects of Triboelectric Energy Generation and Sensors
,”
NPG Asia Mater.
,
12
(
1
), p.
6
.10.1038/s41427-019-0176-0
258.
Chen
,
A.
,
Zhang
,
C.
,
Zhu
,
G.
, and
Wang
,
Z. L.
,
2020
, “
Polymer Materials for High-Performance Triboelectric Nanogenerators
,”
Adv. Sci.
,
7
(
14
), p.
2000186
.10.1002/advs.202000186
259.
Wang
,
X.
,
Chen
,
X.
, and
Iwamoto
,
M.
,
2020
, “
Recent Progress in the Development of Portable High Voltage Source Based on Triboelectric Nanogenerator
,”
Smart Mater. Med.
,
1
, pp.
66
76
.10.1016/j.smaim.2020.07.002
260.
Niu
,
Z.
,
Cheng
,
W.
,
Cao
,
M.
,
Wang
,
D.
,
Wang
,
Q.
,
Han
,
J.
,
Long
,
Y.
, and
Han
,
G.
,
2021
, “
Recent Advances in Cellulose-Based Flexible Triboelectric Nanogenerators
,”
Nano Energy
,
87
, p.
106175
.10.1016/j.nanoen.2021.106175
261.
Parida
,
K.
,
Xiong
,
J.
,
Zhou
,
X.
, and
Lee
,
P. S.
,
2019
, “
Progress on Triboelectric Nanogenerator With Stretchability, Self-Healability and Bio-Compatibility
,”
Nano Energy
,
59
, pp.
237
257
.10.1016/j.nanoen.2019.01.077
262.
Wang
,
H.
,
Cheng
,
J.
,
Wang
,
Z. L. Z.
,
Ji
,
L.
, and
Wang
,
Z. L. Z.
,
2021
, “
Triboelectric Nanogenerators for Human-Health Care
,”
Sci. Bull.
,
66
(
5
), pp.
490
511
.10.1016/j.scib.2020.10.002
263.
Nguyen
,
Q.-T.
, and
Ahn
,
K.-K. K.
,
2021
, “
Fluid-Based Triboelectric Nanogenerators: A Review of Current Status and Applications
,”
Int. J. Precis. Eng. Manuf. Technol.
,
8
(
3
), pp.
1043
1060
.10.1007/s40684-020-00255-x
264.
Ahmed
,
A.
,
Hassan
,
I.
,
Pourrahimi
,
A. M.
,
Helal
,
A. S.
,
El‐Kady
,
M. F.
,
KhaSsaf
,
H.
, and
Kaner
,
R. B.
,
2020
, “
Toward High-Performance Triboelectric Nanogenerators by Engineering Interfaces at the Nanoscale: Looking Into the Future Research Roadmap
,”
Adv. Mater. Technol.
,
5
(
11
), p.
2000520
.10.1002/admt.202000520
265.
Yu
,
Z.
,
Wang
,
Y.
,
Zheng
,
J.
,
Xiang
,
Y.
,
Zhao
,
P.
,
Cui
,
J.
,
Zhou
,
H.
, and
Li
,
D.
,
2020
, “
Rapidly Fabricated Triboelectric Nanogenerator Employing İnsoluble and İnfusible Biomass Materials by Fused Deposition Modeling
,”
Nano Energy
,
68
, p.
104382
.10.1016/j.nanoen.2019.104382
266.
He
,
X.
,
Zou
,
H.
,
Geng
,
Z.
,
Wang
,
X.
,
Ding
,
W.
,
Hu
,
F.
,
Zi
,
Y.
,
Xu
,
C.
,
Zhang
,
S. L.
,
Yu
,
H.
,
Xu
,
M.
,
Zhang
,
W.
,
Lu
,
C.
, and
Wang
,
Z. L.
,
2018
, “
A Hierarchically Nanostructured Cellulose Fiber-Based Triboelectric Nanogenerator for Self-Powered Healthcare Products
,”
Adv. Funct. Mater.
,
28
(
45
), p.
1805540
.10.1002/adfm.201805540
267.
Maiti
,
S.
,
Karan
,
S. K.
,
Kim
,
J. K.
, and
Khatua
,
B. B.
,
2019
, “
Nature Driven Bio-Piezoelectric/Triboelectric Nanogenerator as Next-Generation Green Energy Harvester for Smart and Pollution Free Society
,”
Adv. Energy Mater.
,
9
(
9
), p.
1803027
.10.1002/aenm.201803027
268.
Song
,
Y.
,
Shi
,
Z.
,
Hu
,
G.-H.
,
Xiong
,
C.
,
Isogai
,
A.
, and
Yang
,
Q.
,
2021
, “
Recent Advances in Cellulose-Based Piezoelectric and Triboelectric Nanogenerators for Energy Harvesting: A Review
,”
J. Mater. Chem. A
,
9
(
4
), pp.
1910
1937
.10.1039/D0TA08642H
269.
Niu
,
Q.
,
Wei
,
H.
,
Hsiao
,
B. S.
, and
Zhang
,
Y.
,
2022
, “
Biodegradable Silk Fibroin-Based Bio-Piezoelectric/Triboelectric Nanogenerators as Self-Powered Electronic Devices
,”
Nano Energy
,
96
, p.
107101
.10.1016/j.nanoen.2022.107101
270.
Ma
,
P.
,
Zhu
,
H.
,
Lu
,
H.
,
Zeng
,
Y.
,
Zheng
,
N.
,
Wang
,
Z. L.
, and
Cao
,
X.
,
2021
, “
Design of Biodegradable Wheat-Straw Based Triboelectric Nanogenerator as Self-Powered Sensor for Wind Detection
,”
Nano Energy
,
86
, p.
106032
.10.1016/j.nanoen.2021.106032
271.
Niu
,
Q.
,
Huang
,
L.
,
Lv
,
S.
,
Shao
,
H.
,
Fan
,
S.
, and
Zhang
,
Y.
,
2020
, “
Pulse-Driven Bio-Triboelectric Nanogenerator Based on Silk Nanoribbons
,”
Nano Energy
,
74
, p.
104837
.10.1016/j.nanoen.2020.104837
272.
Mi
,
H.-Y.
,
Li
,
H.
,
Jing
,
X.
,
He
,
P.
,
Feng
,
P.-Y.
,
Tao
,
X.
,
Liu
,
Y.
,
Liu
,
C.
, and
Shen
,
C.
,
2020
, “
Silk and Silk Composite Aerogel-Based Biocompatible Triboelectric Nanogenerators for Efficient Energy Harvesting
,”
Ind. Eng. Chem. Res.
,
59
(
27
), pp.
12399
12408
.10.1021/acs.iecr.0c01117
273.
Lu
,
Y.
,
Li
,
X.
,
Ping
,
J.
,
He
,
J.
, and
Wu
,
J.
,
2020
, “
A Flexible, Recyclable, and High-Performance Pullulan-Based Triboelectric Nanogenerator (TENG)
,”
Adv. Mater. Technol.
,
5
(
2
), p.
1900905
.10.1002/admt.201900905
274.
Kim
,
W.
,
Park
,
J. H.
,
Hwang
,
H. J.
,
Rim
,
Y. S.
, and
Choi
,
D.
,
2022
, “
Interfacial Molecular Engineering for Enhanced Polarization of Negative Tribo-Materials
,”
Nano Energy
,
96
, p.
107110
.10.1016/j.nanoen.2022.107110
275.
Ding
,
P.
,
Chen
,
J.
,
Farooq
,
U.
,
Zhao
,
P.
,
Soin
,
N.
,
Yu
,
L.
,
Jin
,
H.
,
Wang
,
X.
,
Dong
,
S.
, and
Luo
,
J.
,
2018
, “
Realizing the Potential of Polyethylene Oxide as New Positive Tribo-Material: Over 40 W/m2 High Power Flat Surface Triboelectric Nanogenerators
,”
Nano Energy
,
46
, pp.
63
72
.10.1016/j.nanoen.2018.01.034
276.
Chen
,
Z.
,
He
,
X.
,
Xiao
,
C.
, and
Kim
,
S. H.
,
2018
, “
Effect of Humidity on Friction and Wear—A Critical Review
,”
Lubricants
,
6
(
3
), p.
74
.10.3390/lubricants6030074
277.
Trinh
,
V. L.
, and
Chung
,
C. K.
,
2018
, “
Harvesting Mechanical Energy, Storage, and Lighting Using a Novel PDMS Based Triboelectric Generator With İnclined Wall Arrays and Micro-Topping Structure
,”
Appl. Energy
,
213
, pp.
353
365
.10.1016/j.apenergy.2018.01.039
278.
He
,
W.
,
Fu
,
X.
,
Zhang
,
D.
,
Zhang
,
Q.
,
Zhuo
,
K.
,
Yuan
,
Z.
, and
Ma
,
R.
,
2021
, “
Recent Progress of Flexible/Wearable Self-Charging Power Units Based on Triboelectric Nanogenerators
,”
Nano Energy
,
84
, p.
105880
.10.1016/j.nanoen.2021.105880
279.
Wang
,
C.
,
Lai
,
S.-K.
,
Wang
,
J.-M.
,
Feng
,
J.-J.
, and
Ni
,
Y.-Q.
,
2021
, “
An Ultra-Low-Frequency, Broadband and Multi-Stable Tri-Hybrid Energy Harvester for Enabling the Next-Generation Sustainable Power
,”
Appl. Energy
,
291
, p.
116825
.10.1016/j.apenergy.2021.116825
280.
Dzhardimalieva
,
G. I.
,
Yadav
,
B. C.
,
Uflyand
,
I. E.
,
Oliva González
,
C. M.
,
Kharisov
,
B. I.
,
Kharissova
,
O. V.
, and
García
,
B. O.
,
2021
, “
A Review on the Polymers With Shape Memory Assisted Self-Healing Properties for Triboelectric Nanogenerators
,”
J. Mater. Res.
,
36
(
6
), pp.
1225
1240
.10.1557/s43578-021-00149-x
281.
Liu
,
X.
,
Miao
,
J.
,
Fan
,
Q.
,
Zhang
,
W.
,
Zuo
,
X.
,
Tian
,
M.
,
Zhu
,
S.
,
Zhang
,
X.
, and
Qu
,
L.
,
2022
, “
Recent Progress on Smart Fiber and Textile Based Wearable Strain Sensors: Materials, Fabrications and Applications
,”
Adv. Fiber Mater.
,
4
(
3
), pp.
361
389
.10.1007/s42765-021-00126-3
282.
Khandelwal
,
G.
,
Chandrasekhar
,
A.
,
Alluri
,
N. R.
,
Vivekananthan
,
V.
,
Maria Joseph Raj
,
N. P.
, and
Kim
,
S.-J.
,
2018
, “
Trash to Energy: A Facile, Robust and Cheap Approach for Mitigating Environment Pollutant Using Household Triboelectric Nanogenerator
,”
Appl. Energy
,
219
, pp.
338
349
.10.1016/j.apenergy.2018.03.031
283.
Zou
,
H.
,
Guo
,
L.
,
Xue
,
H.
,
Zhang
,
Y.
,
Shen
,
X.
,
Liu
,
X.
,
Wang
,
P.
,
He
,
X.
,
Dai
,
G.
,
Jiang
,
P.
,
Zheng
,
H.
,
Zhang
,
B.
,
Xu
,
C.
, and
Wang
,
Z. L.
,
2020
, “
Quantifying and Understanding the Triboelectric Series of İnorganic Non-Metallic Materials
,”
Nat. Commun.
,
11
(
1
), p.
2093
.10.1038/s41467-020-15926-1
284.
Yang
,
Y.
,
Zhang
,
H.
, and
Wang
,
Z. L.
,
2014
, “
Direct-Current Triboelectric Generator
,”
Adv. Funct. Mater.
,
24
(
24
), pp.
3745
3750
.10.1002/adfm.201304295
285.
Wu
,
Y.
,
Jing
,
Q.
,
Chen
,
J.
,
Bai
,
P.
,
Bai
,
J.
,
Zhu
,
G.
,
Su
,
Y.
, and
Wang
,
Z. L.
,
2015
, “
A Self-Powered Angle Measurement Sensor Based on Triboelectric Nanogenerator
,”
Adv. Funct. Mater.
,
25
(
14
), pp.
2166
2174
.10.1002/adfm.201403828
286.
Zhang
,
X.
,
Chen
,
L.
,
Jiang
,
Y.
,
Lim
,
W.
, and
Soh
,
S.
,
2019
, “
Rationalizing the Triboelectric Series of Polymers
,”
Chem. Mater.
,
31
(
5
), pp.
1473
1478
.10.1021/acs.chemmater.8b04526
287.
Chen
,
S.-N.
,
Chen
,
C.-H.
,
Lin
,
Z.-H.
,
Tsao
,
Y.-H.
, and
Liu
,
C.-P.
,
2018
, “
On Enhancing Capability of Tribocharge Transfer of ZnO Nanorod Arrays by Sb Doping for Anomalous Output Performance İmprovement of Triboelectric Nanogenerators
,”
Nano Energy
,
45
, pp.
311
318
.10.1016/j.nanoen.2018.01.013
288.
Zou
,
H.
,
Zhang
,
Y.
,
Guo
,
L.
,
Wang
,
P.
,
He
,
X.
,
Dai
,
G.
,
Zheng
,
H.
,
Chen
,
C.
,
Wang
,
A. C.
,
Xu
,
C.
, and
Wang
,
Z. L.
,
2019
, “
Quantifying the Triboelectric Series
,”
Nat. Commun.
,
10
(
1
), p.
1427
.10.1038/s41467-019-09461-x
289.
Pradel
,
K. C.
, and
Fukata
,
N.
,
2021
, “
Systematic Optimization of Triboelectric Nanogenerator Performance Through Surface Micropatterning
,”
Nano Energy
,
83
, p.
105856
.10.1016/j.nanoen.2021.105856
290.
Dzhardimalieva
,
G. I.
,
Yadav
,
B. C.
,
Lifintseva
,
T. V.
, and
Uflyand
,
I. E.
,
2021
, “
Polymer Chemistry Underpinning Materials for Triboelectric Nanogenerators (TENGs): Recent Trends
,”
Eur. Polym. J.
,
142
, p.
110163
.10.1016/j.eurpolymj.2020.110163
291.
Kim
,
M. P.
,
Lee
,
Y.
,
Hur
,
Y. H.
,
Park
,
J.
,
Kim
,
J.
,
Lee
,
Y.
,
Ahn
,
C. W.
,
Song
,
S. W.
,
Jung
,
Y. S.
, and
Ko
,
H.
,
2018
, “
Molecular Structure Engineering of Dielectric Fluorinated Polymers for Enhanced Performances of Triboelectric Nanogenerators
,”
Nano Energy
,
53
, pp.
37
45
.10.1016/j.nanoen.2018.08.032
292.
Xia
,
X.
,
Chen
,
J.
,
Guo
,
H.
,
Liu
,
G.
,
Wei
,
D.
,
Xi
,
Y.
,
Wang
,
X.
, and
Hu
,
C.
,
2017
, “
Embedding Variable Micro-Capacitors in Polydimethylsiloxane for Enhancing Output Power of Triboelectric Nanogenerator
,”
Nano Res.
,
10
(
1
), pp.
320
330
.10.1007/s12274-016-1294-4
293.
Zou
,
Y.
,
Xu
,
J.
,
Chen
,
K.
, and
Chen
,
J.
,
2021
, “
Advances in Nanostructures for High-Performance Triboelectric Nanogenerators
,”
Adv. Mater. Technol.
,
6
(
3
), p.
2000916
.10.1002/admt.202000916
294.
Sun
,
Q.-J.
,
Lei
,
Y.
,
Zhao
,
X.-H.
,
Han
,
J.
,
Cao
,
R.
,
Zhang
,
J.
,
Wu
,
W.
,
Heidari
,
H.
,
Li
,
W.-J.
,
Sun
,
Q.
, and
Roy
,
V. A.
,
2021
, “
Scalable Fabrication of Hierarchically Structured Graphite/Polydimethylsiloxane Composite Films for Large-Area Triboelectric Nanogenerators and Self-Powered Tactile Sensing
,”
Nano Energy
,
80
, p.
105521
.10.1016/j.nanoen.2020.105521
295.
Hajra
,
S.
,
Vivekananthan
,
V.
,
Sahu
,
M.
,
Khandelwal
,
G.
,
Joseph Raj
,
N. P. M.
, and
Kim
,
S.-J.
,
2021
, “
Triboelectric Nanogenerator Using Multiferroic Materials: An Approach for Energy Harvesting and Self-Powered Magnetic Field Detection
,”
Nano Energy
,
85
, p.
105964
.10.1016/j.nanoen.2021.105964
296.
Yang
,
Y.
,
Lin
,
L.
,
Zhang
,
Y.
,
Jing
,
Q.
,
Hou
,
T.-C.
, and
Wang
,
Z. L.
,
2012
, “
Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator
,”
ACS Nano
,
6
(
11
), pp.
10378
10383
.10.1021/nn304374m
297.
Wang
,
S.
,
Lin
,
L.
, and
Wang
,
Z. L.
,
2015
, “
Triboelectric Nanogenerators as Self-Powered Active Sensors
,”
Nano Energy
,
11
, pp.
436
462
.10.1016/j.nanoen.2014.10.034
298.
Liu
,
Y.
,
Ping
,
J.
, and
Ying
,
Y.
,
2021
, “
Recent Progress in 2D-Nanomaterial-Based Triboelectric Nanogenerators
,”
Adv. Funct. Mater.
,
31
(
17
), p.
2009994
.10.1002/adfm.202009994
299.
Mao
,
Y.
,
Li
,
Y.
,
Xie
,
J.
,
Liu
,
H.
,
Guo
,
C.
, and
Hu
,
W.
,
2021
, “
Triboelectric Nanogenerator/Supercapacitor in-One Self-Powered Textile Based on PTFE Yarn Wrapped PDMS/MnO2NW Hybrid Elastomer
,”
Nano Energy
,
84
, p.
105918
.10.1016/j.nanoen.2021.105918
300.
Chen
,
C.
,
Chen
,
L.
,
Wu
,
Z.
,
Guo
,
H.
,
Yu
,
W.
,
Du
,
Z.
, and
Wang
,
Z. L.
,
2020
, “
3D Double-Faced İnterlock Fabric Triboelectric Nanogenerator for Bio-Motion Energy Harvesting and as Self-Powered Stretching and 3D Tactile Sensors
,”
Mater. Today
,
32
, pp.
84
93
.10.1016/j.mattod.2019.10.025
301.
Gao
,
Y.
,
Li
,
Z.
,
Xu
,
B.
,
Li
,
M.
,
Jiang
,
C.
,
Guan
,
X.
, and
Yang
,
Y.
,
2022
, “
Scalable Core–Spun Coating Yarn-Based Triboelectric Nanogenerators With Hierarchical Structure for Wearable Energy Harvesting and Sensing Via Continuous Manufacturing
,”
Nano Energy
,
91
, p.
106672
.10.1016/j.nanoen.2021.106672
302.
Chen
,
C.
,
Guo
,
H.
,
Chen
,
L.
,
Wang
,
Y.-C.
,
Pu
,
X.
,
Yu
,
W.
,
Wang
,
F.
,
Du
,
Z.
, and
Wang
,
Z. L.
,
2020
, “
Direct Current Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting
,”
ACS Nano
,
14
(
4
), pp.
4585
4594
.10.1021/acsnano.0c00138
303.
Li
,
M.
,
Xu
,
B.
,
Li
,
Z.
,
Gao
,
Y.
,
Yang
,
Y.
, and
Huang
,
X.
,
2022
, “
Toward 3D Double-Electrode Textile Triboelectric Nanogenerators for Wearable Biomechanical Energy Harvesting and Sensing
,”
Chem. Eng. J.
,
450
(Part 1), p.
137491
.10.1016/j.cej.2022.137491
304.
Chen
,
C.
,
Zhang
,
L.
,
Ding
,
W.
,
Chen
,
L.
,
Liu
,
J.
,
Du
,
Z.
, and
Yu
,
W.
,
2020
, “
Woven Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting and as Self-Powered Gait-Recognizing Socks
,”
Energies
,
13
(
16
), p.
4119
.10.3390/en13164119
305.
Niu
,
L.
,
Peng
,
X.
,
Chen
,
L.
,
Liu
,
Q.
,
Wang
,
T.
,
Dong
,
K.
,
Pan
,
H.
,
Cong
,
H.
,
Liu
,
G.
,
Jiang
,
G.
,
Chen
,
C.
, and
Ma
,
P.
,
2022
, “
Industrial Production of Bionic Scales Knitting Fabric-Based Triboelectric Nanogenerator for Outdoor Rescue and Human Protection
,”
Nano Energy
,
97
, p.
107168
.10.1016/j.nanoen.2022.107168
306.
Khandelwal
,
G.
,
Maria Joseph Raj
,
N. P.
,
Vivekananthan
,
V.
, and
Kim
,
S.-J.
,
2021
, “
Biodegradable Metal-Organic Framework MIL-88A for Triboelectric Nanogenerator
,”
IScience
,
24
(
2
), p.
102064
.10.1016/j.isci.2021.102064
307.
Qiao
,
G.
,
Wang
,
J.
,
Yu
,
X.
,
Jia
,
R.
,
Cheng
,
T.
, and
Wang
,
Z. L.
,
2021
, “
A Bidirectional Direct Current Triboelectric Nanogenerator With the Mechanical Rectifier
,”
Nano Energy
,
79
, p.
105408
.10.1016/j.nanoen.2020.105408
308.
Zhou
,
Y.
,
Deng
,
W.
,
Xu
,
J.
, and
Chen
,
J.
,
2020
, “
Engineering Materials at the Nanoscale for Triboelectric Nanogenerators
,”
Cell. Rep. Phys. Sci.
,
1
(
8
), p.
100142
.10.1016/j.xcrp.2020.100142
309.
Haghayegh
,
M.
,
Cao
,
R.
,
Zabihi
,
F.
,
Bagherzadeh
,
R.
,
Yang
,
S.
, and
Zhu
,
M.
,
2022
, “
Recent Advances in Stretchable, Wearable and Bio-Compatible Triboelectric Nanogenerators
,”
J. Mater. Chem. C
,
10
(
32
), pp.
11439
11471
.10.1039/D2TC01931K
310.
Lin
,
L.
,
Xie
,
Y.
,
Niu
,
S.
,
Wang
,
S.
,
Yang
,
P.-K.
, and
Wang
,
Z. L.
,
2015
, “
Robust Triboelectric Nanogenerator Based on Rolling Electrification and Electrostatic Induction at an Instantaneous Energy Conversion Efficiency of ∼55%
,”
ACS Nano
,
9
(
1
), pp.
922
930
.10.1021/nn506673x
311.
Torres
,
F. G.
,
Troncoso
,
O. P.
, and
De-la-Torre
,
G. E.
,
2022
, “
Hydrogel-Based Triboelectric Nanogenerators: Properties, Performance, and Applications
,”
Int. J. Energy Res.
,
46
(
5
), pp.
5603
5624
.10.1002/er.7585
312.
Ding
,
W.
,
Wang
,
A. C.
,
Wu
,
C.
,
Guo
,
H.
, and
Wang
,
Z. L.
,
2019
, “
Human–Machine Interfacing Enabled by Triboelectric Nanogenerators and Tribotronics
,”
Adv. Mater. Technol.
,
4
(
1
), p.
1800487
.10.1002/admt.201800487
313.
Yu
,
Y.
,
Li
,
Z.
,
Wang
,
Y.
,
Gong
,
S.
, and
Wang
,
X.
,
2015
, “
Sequential Infiltration Synthesis of Doped Polymer Films With Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development
,”
Adv. Mater.
,
27
(
33
), pp.
4938
4944
.10.1002/adma.201502546