Abstract

The integration of ceramic matrix composites (CMCs) into safety-critical applications, such as turbine engines and aerospace structures, necessitates a sound understanding of their expected damage evolution under in-service conditions and real-time health-monitoring methods to assess their damage state. The measurement of acoustic emissions (AEs), the transient elastic waves emitted during damage formation, offers an enhanced capability for evaluating damage evolution and structural health in CMCs due to its high sensitivity, accurate temporal resolution, and relative ease of use compared to other nondestructive evaluation (NDE) techniques. Recent advances in numerical simulation methods and data-driven model development, in combination with improved multimodal experimental characterization methods and sensor hardware, are rapidly advancing AE to a mature technique for damage quantification. This review discusses the fundamental principles of acoustic emissions, provides practical guidelines on their experimental characterization and analysis, and offers perspectives on the current state-of-the-art.

References

1.
Proctor
,
T. M.
,
1982
, “
An Improved Piezoelectric Acoustic Emission Transducer
,”
J. Acoust. Soc. Am.
,
71
(
5
), pp.
1163
1168
.10.1121/1.387763
2.
Glaser
,
S. D.
,
Weiss
,
G. G.
, and
Johnson
,
L. R.
,
1998
, “
Body Waves Recorded Inside an Elastic Half-Space by an Embedded, Wideband Velocity Sensor
,”
J. Acoust. Soc. Am.
,
104
(
3
), pp.
1404
1412
.10.1121/1.424350
3.
Enoki
,
M.
,
Watanabe
,
M.
,
Chivavibul
,
P.
, and
Kishi
,
T.
,
2000
, “
Non-Contact Measurement of Acoustic Emission in Materials by Laser Interferometry
,”
Sci. Technol. Adv. Mater.
,
1
(
3
), pp.
157
165
.10.1016/S1468-6996%2800%2900017-6
4.
Mei
,
H.
,
Haider
,
M. F.
,
Joseph
,
R.
,
Migot
,
A.
, and
Giurgiutiu
,
V.
,
2019
, “
Recent Advances in Piezoelectric Wafer Active Sensors for Structural Health Monitoring Applications
,”
Sensors
,
19
(
2
), p.
383
.10.3390/s19020383
5.
Morscher
,
G. N.
,
1999
, “
Modal Acoustic Emission of Damage Accumulation in a Woven SiC/SiC Composite
,”
Compos. Sci. Technol.
,
59
(
5
), pp.
687
697
.10.1016/S0266-3538(98)00121-3
6.
Shiraiwa
,
T.
,
Ishikawa
,
K.
,
Enoki
,
M.
,
Shinozaki
,
I.
, and
Kanazawa
,
S.
,
2020
, “
Acoustic Emission Analysis Using Bayesian Model Selection for Damage Characterization in Ceramic Matrix Composites
,”
J. Eur. Ceram. Soc.
,
40
(
8
), pp.
2791
2800
.10.1016/j.jeurceramsoc.2020.03.035
7.
Ohtsu
,
M.
,
1991
, “
Simplified Moment Tensor Analysis and Unified Decomposition of Acoustic Emission Source: Application to in Situ Hydrofracturing Test
,”
J. Geophys. Res.: Solid Earth
,
96
(
B4
), pp.
6211
6221
.10.1029/90JB02689
8.
Sause
,
M.
,
Gribov
,
A.
,
Unwin
,
A.
, and
Horn
,
S.
,
2012
, “
Pattern Recognition Approach to Identify Natural Clusters of Acoustic Emission Signals
,”
Pattern Recognit. Lett.
,
33
(
1
), pp.
17
23
.10.1016/j.patrec.2011.09.018
9.
Muir
,
C.
,
Swaminathan
,
B.
,
Almansour
,
A. S.
,
Sevener
,
K.
,
Smith
,
C.
,
Presby
,
M.
,
Kiser
,
J. D.
,
Pollock
,
T. M.
, and
Daly
,
S.
,
2021
, “
Damage Mechanism Identification in Composites Via Machine Learning and Acoustic Emission
,”
NPJ Comput. Mater.
,
7
(
1
), p.
95
.10.1038/s41524-021-00565-x
10.
Kundu
,
T.
,
2014
, “
Acoustic Source Localization
,”
Ultrasonics
,
54
(
1
), pp.
25
38
.10.1016/j.ultras.2013.06.009
11.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.10.1038/nature14539
12.
Mhamdi
,
L.
,
Schumacher
,
T.
, and
Linzer
,
L.
,
2015
, “
5—Seismology-Based Acoustic Emission Techniques for the Monitoring of Fracture Processes in Concrete Structures
,”
Acoustic Emission and Related Non-Destructive Evaluation Techniques in the Fracture Mechanics of Concrete
,
M.
Ohtsu
, ed.,
Woodhead Publishing Series in Civil and Structural Engineering, Woodhead Publishing
,
Oxford, UK
, pp.
79
111
.
13.
Hamstad
,
M. A.
, and
Gary
,
J.
,
2002
, “
A Wavelet Transform Applied to Acoustic Emission Signals: Part 1: Source Identification
,”
J. Acoust. Emiss.
,
20
(
1
), pp.
62
82
.https://www.researchgate.net/publication/253109356_A_wavelet_transform_applied_to_acoustic_emission_signals_Part_1_Source_identification
14.
Sause
,
M. G. R.
, and
Horn
,
S.
,
2010
, “
Simulation of Acoustic Emission in Planar Carbon Fiber Reinforced Plastic Specimens
,”
J. Nondestruct. Eval.
,
29
(
2
), pp.
123
142
.10.1007/s10921-010-0071-7
15.
Sause
,
M. G. R.
, and
Richler
,
S.
,
2015
, “
Finite Element Modeling of Cracks as Acoustic Emission Sources
,”
J. Nondestruct. Eval.
,
34
(
1
), p.
4
.10.1007/s10921-015-0278-8
16.
Kocur
,
G. K.
,
Saenger
,
E. H.
, and
Vogel
,
T.
,
2010
, “
Elastic Wave Propagation in a Segmented X-Ray Computed Tomography Model of a Concrete Specimen
,”
Constr. Build. Mater.
,
24
(
12
), pp.
2393
2400
.10.1016/j.conbuildmat.2010.05.013
17.
Gollob
,
S.
,
Kocur
,
G. K.
,
Schumacher
,
T.
,
Mhamdi
,
L.
, and
Vogel
,
T.
,
2017
, “
A Novel Multi-Segment Path Analysis Based on a Heterogeneous Velocity Model for the Localization of Acoustic Emission Sources in Complex Propagation Media
,”
Ultrasonics
,
74
, pp.
48
61
.10.1016/j.ultras.2016.09.024
18.
Hamstad
,
M. A.
,
2023
, “
A Glimpse at Fifty-One Years in Acoustic Emission
,”
35th European and 10th International Conference on AE Testing
, Ljubljana, Slovenia, Sept., 28(1).10.58286/27592
19.
Morscher
,
G. N.
, and
Godin
,
N.
,
2014
, “
Use of Acoustic Emission for Ceramic Matrix Composites
,”
Ceramic Matrix Composites
,
Wiley
, Hoboken, NJ, pp.
569
590
.
20.
Gorman
,
M. R.
, and
Ziola
,
S. M.
,
1991
, “
Plate Waves Produced by Transverse Matrix Cracking
,”
Ultrasonics
,
29
(
3
), pp.
245
251
.10.1016/0041-624X(91)90063-E
21.
Philippidis
,
T. P.
,
Nikolaidis
,
V. N.
, and
Anastassopoulos
,
A. A.
,
1998
, “
Damage Characterization of Carbon/Carbon Laminates Using Neural Network Techniques on AE Signals
,”
NDT E Int.
,
31
(
5
), pp.
329
340
.10.1016/S0963-8695(98)00015-2
22.
Maillet
,
E.
,
Singhal
,
A.
,
Hilmas
,
A.
,
Gao
,
Y.
,
Zhou
,
Y.
,
Henson
,
G.
, and
Wilson
,
G.
,
2019
, “
Combining In-Situ Synchrotron X-Ray Microtomography and Acoustic Emission to Characterize Damage Evolution in Ceramic Matrix Composites
,”
J. Eur. Ceram. Soc.
,
39
(
13
), pp.
3546
3556
.10.1016/j.jeurceramsoc.2019.05.027
23.
Swaminathan
,
B.
,
McCarthy
,
N. R.
,
Almansour
,
A. S.
,
Sevener
,
K.
,
Musaffar
,
A. K.
,
Pollock
,
T. M.
,
Kiser
,
J. D.
, and
Daly
,
S.
,
2021
, “
Interpreting Acoustic Energy Emission in SiC/SiC Minicomposites Through Modeling of Fracture Surface Areas
,”
J. Eur. Ceram. Soc.
,
41
(
14
), pp.
6883
6893
.10.1016/j.jeurceramsoc.2021.06.030
24.
Muir
,
C.
,
Swaminathan
,
B.
,
Fields
,
K.
,
Almansour
,
A. S.
,
Sevener
,
K.
,
Smith
,
C.
,
Presby
,
M.
,
Kiser
,
J. D.
,
Pollock
,
T. M.
, and
Daly
,
S.
,
2021
, “
A Machine Learning Framework for Damage Mechanism Identification From Acoustic Emissions in Unidirectional SiC/SiC Composites
,”
NPJ Comput. Mater.
,
7
(
1
), pp.
1
10
.10.1038/s41524-021-00620-7
25.
Wisner
,
B.
,
Cabal
,
M.
,
Vanniamparambil
,
P. A.
,
Hochhalter
,
J.
,
Leser
,
W. P.
, and
Kontsos
,
A.
,
2015
, “
In Situ Microscopic Investigation to Validate Acoustic Emission Monitoring
,”
Exp. Mech.
,
55
(
9
), pp.
1705
1715
.10.1007/s11340-015-0074-5
26.
Dobroň
,
P.
,
Chmelík
,
F.
,
Yi
,
S.
,
Parfenenko
,
K.
,
Letzig
,
D.
, and
Bohlen
,
J.
,
2011
, “
Grain Size Effects on Deformation Twinning in an Extruded Magnesium Alloy Tested in Compression
,”
Scr. Mater.
,
65
(
5
), pp.
424
427
.10.1016/j.scriptamat.2011.05.027
27.
Cuadra
,
J.
,
Vanniamparambil
,
P. A.
,
Hazeli
,
K.
,
Bartoli
,
I.
, and
Kontsos
,
A.
,
2013
, “
Damage Quantification in Polymer Composites Using a Hybrid NDT Approach
,”
Compos. Sci. Technol.
,
83
, pp.
11
21
.10.1016/j.compscitech.2013.04.013
28.
Morscher
,
G. N.
,
Baker
,
C.
, and
Smith
,
C.
,
2014
, “
Electrical Resistance of SiC Fiber Reinforced SiC/Si Matrix Composites at Room Temperature During Tensile Testing
,”
Int. J. Appl. Ceram. Technol.
,
11
(
2
), pp.
263
272
.10.1111/ijac.12175
29.
Smith
,
C.
, and
Morscher
,
G.
,
2018
, “
Electrical Resistance Changes of Melt Infiltrated SiC/SiC Loaded in Tension at Room Temperature
,”
Ceram. Int.
,
44
(
1
), pp.
183
192
.10.1016/j.ceramint.2017.09.157
30.
Sukhanov
,
D.
,
Zavyalova
,
K.
, and
Kadurina
,
A.
,
2019
, “
Method for Enhancement of Spatial Resolution of Eddy Current Imaging
,”
Meas. Sci. Technol.
,
30
(
6
), p.
065402
.10.1088/1361-6501/ab0b10
31.
Swaminathan
,
B.
,
McCarthy
,
N. R.
,
Almansour
,
A. S.
,
Sevener
,
K.
,
Pollock
,
T. M.
,
Kiser
,
J. D.
, and
Daly
,
S.
,
2021
, “
Microscale Characterization of Damage Accumulation in CMCs
,”
J. Eur. Ceram. Soc.
,
41
(
5
), pp.
3082
3093
.10.1016/j.jeurceramsoc.2020.05.077
32.
Wisner
,
B. J.
,
Potstada
,
P.
,
Perumal
,
V. I.
,
Baxevanakis
,
K. P.
,
Sause
,
M. G. R.
, and
Kontsos
,
A.
,
2019
, “
Progressive Failure Monitoring and Analysis in Aluminium by in Situ Nondestructive Evaluation
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
9
), pp.
2133
2145
.10.1111/ffe.13088
33.
Hilmas
,
A. M.
,
Sevener
,
K. M.
, and
Halloran
,
J. W.
,
2020
, “
Damage Evolution in SiC/SiC Unidirectional Composites by X-Ray Tomography
,”
J. Am. Ceram. Soc.
,
103
(
5
), pp.
3436
3447
.10.1111/jace.17017
34.
Maire
,
E.
,
Carmona
,
V.
,
Courbon
,
J.
, and
Ludwig
,
W.
,
2007
, “
Fast X-Ray Tomography and Acoustic Emission Study of Damage in Metals During Continuous Tensile Tests
,”
Acta Mater.
,
55
(
20
), pp.
6806
6815
.10.1016/j.actamat.2007.08.043
35.
Orenes Balaciart
,
S.
,
Pannier
,
Y.
,
Gigliotti
,
M.
,
Mellier
,
D.
, and
Tranquart
,
B.
,
2024
, “
Damage Onset Mechanisms in Multi-Axial Tensile Test of 3D Woven Organic Matrix Composite Through an in Situ Coupled Micro-Computed Tomography and Acoustic Emission Methodology
,”
Compos. Struct.
,
327
, p.
117651
.10.1016/j.compstruct.2023.117651
36.
Dennett
,
C. A.
,
Choens
,
R. C.
,
Taylor
,
C. A.
,
Heckman
,
N. M.
,
Ingraham
,
M. D.
,
Robinson
,
D.
,
Boyce
,
B. L.
,
Short
,
M. P.
, and
Hattar
,
K.
,
2020
, “
Listening to Radiation Damage In Situ: Passive and Active Acoustic Techniques
,”
JOM
,
72
(
1
), pp.
197
209
.10.1007/s11837-019-03898-7
37.
Nozawa
,
T.
,
Koyanagi
,
T.
,
Katoh
,
Y.
, and
Tanigawa
,
H.
,
2022
, “
Failure Evaluation of Neutron-Irradiated SiC/SiC Composites by Underwater Acoustic Emission
,”
J. Nucl. Mater.
,
566
, p.
153787
.10.1016/j.jnucmat.2022.153787
38.
Hossain
,
M. S.
, and
Taheri
,
H.
,
2020
, “
In Situ Process Monitoring for Additive Manufacturing Through Acoustic Techniques
,”
J. Mater. Eng. Perform.
,
29
(
10
), pp.
6249
6262
.10.1007/s11665-020-05125-w
39.
Padture
,
N. P.
,
2016
, “
Advanced Structural Ceramics in Aerospace Propulsion
,”
Nat. Mater.
,
15
(
8
), pp.
804
809
.10.1038/nmat4687
40.
Zok
,
F. W.
,
2016
, “
Ceramic-Matrix Composites Enable Revolutionary Gains in Turbine Engine Efficiency
,”
Am. Ceram. Soc. Bull.
,
95
(
5
), pp.
22
28
.
41.
Jefferson
,
G.
,
Przybyla
,
C.
, and
Zawada
,
L.
,
2021
, “
Preface: Assessment of Damage Progression Models For SiC/SiC Ceramic Matrix Composites
,”
Int. J. Multiscale Comput. Eng.
,
19
(
5
), pp.
v
xiv
.10.1615/IntJMultCompEng.2021041807
42.
Katoh
,
Y.
,
Snead
,
L. L.
,
Henager
,
C. H.
,
Nozawa
,
T.
,
Hinoki
,
T.
,
Iveković
,
A.
,
Novak
,
S.
, and
Gonzalez de Vicente
,
S. M.
,
2014
, “
Current Status and Recent Research Achievements in SiC/SiC Composites
,”
J. Nucl. Mater.
,
455
(
1–3
), pp.
387
397
.10.1016/j.jnucmat.2014.06.003
43.
Whitlow
,
T.
,
Jones
,
E.
, and
Przybyla
,
C.
,
2016
, “
In-Situ Damage Monitoring of a SiC/SiC Ceramic Matrix Composite Using Acoustic Emission and Digital Image Correlation
,”
Compos. Struct.
,
158
, pp.
245
251
.10.1016/j.compstruct.2016.09.040
44.
Almansour
,
A.
,
Maillet
,
E.
,
Ramasamy
,
S.
, and
Morscher
,
G. N.
,
2015
, “
Effect of Fiber Content on Single Tow SiC Minicomposite Mechanical and Damage Properties Using Acoustic Emission
,”
J. Eur. Ceram. Soc.
,
35
(
13
), pp.
3389
3399
.10.1016/j.jeurceramsoc.2015.06.001
45.
Ojard
,
G.
,
Goberman
,
D.
, and
Holowczak
,
J.
,
2017
, “
Acoustic Emission as a Screening Tool for Ceramic Matrix Composites
,”
AIP Conf. Proc.
,
1806
(
1
), p.
020027
.10.1063/1.4974568
46.
Ojard
,
G.
,
Mordasky
,
M.
, and
Kumar
,
R.
,
2018
, “
Acoustic Emission Monitoring of Damage in Ceramic Matrix Composites: Effects of Weaves and Feature
,”
AIP Conf. Proc.
,
1949
(
1
), p.
230028
.10.1063/1.5031675
47.
Appleby
,
M. P.
,
Zhu
,
D.
, and
Morscher
,
G. N.
,
2015
, “
Mechanical Properties and Real-Time Damage Evaluations of Environmental Barrier Coated SiC/SiC CMCs Subjected to Tensile Loading Under Thermal Gradients
,”
Surf. Coat. Technol.
,
284
, pp.
318
326
.10.1016/j.surfcoat.2015.07.042
48.
Morscher
,
G. N.
,
Singh
,
M.
,
Kiser
,
J. D.
,
Freedman
,
M.
, and
Bhatt
,
R.
,
2007
, “
Modeling Stress-Dependent Matrix Cracking and Stress-Strain Behavior in 2D Woven SiC Fiber Reinforced CVI SiC Composites
,”
Compos. Sci. Technol.
,
67
(
6
), pp.
1009
1017
.10.1016/j.compscitech.2006.06.007
49.
Quiney
,
Z.
,
Jeffs
,
S.
,
Gale
,
L.
,
Pattison
,
S.
, and
Bache
,
M.
,
2023
, “
Matrix Cracking Onset Stress and Strain as a Function of Temperature, and Characterisation of Damage Modes in SiCf/SiC Ceramic Matrix Composites Via Acoustic Emission
,”
J. Eur. Ceram. Soc.
,
43
(
7
), pp.
2958
2967
.10.1016/j.jeurceramsoc.2022.10.042
50.
Levy
,
D.
,
2017
, “
Ceramic Matrix Composites Take Flight in LEAP Jet Engine
,” Oak Ridge National Laboratory, Oakridge, TN, accessed Feb. 20, 2024, https://www.ornl.gov/news/ceramic-matrix-composites-take-flight-leap-jet-engine
51.
Kiser
,
J.
,
Grady
,
J.
,
Smith
,
C.
,
Sullivan
,
R.
,
Wiesner
,
V.
,
Hurst
,
J.
,
Arnold
,
S.
,
Zhu
,
D.
,
Almansour
,
A.
,
Bhatt
,
R.
,
Kalluri
,
S.
,
Raj
,
S.
, et al.,
2017
, “
Overview of Ceramic Matrix Composite Research at NASA Glenn Research Center
,” Ceramics Expo 2016, Cleveland, OH, NASA Technical Reports Server, Hampton, VA, Document ID: 20160014907, accessed Jan. 3, 2024, https://ntrs.nasa.gov/citations/20160014907
52.
Dale
,
D.
, and
Ruschau
,
A.
, “
NASA Hytec CMC Turbine Blade Durability
,” NASA Technical Reports Server, Hampton, VA, Document ID: 20230008139, accessed Jan. 15, 2024, https://ntrs.nasa.gov/citations/20230008139
53.
Fox
,
D. S.
,
Miller
,
R. A.
,
Zhu
,
D.
,
Perez
,
M.
,
Cuy
,
M. D.
, and
Robinson
,
R. C.
, “
Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory
,” NASA Technical Reports Server, Hampton, VA, Document ID: 20110008403, accessed Jan. 19, 2024, https://ntrs.nasa.gov/citations/20110008403
54.
Bhatt
,
R.
,
Fox
,
D.
, and
Smith
,
C.
,
2015
, “
Creep Behavior and Durability of Cracked CMC
,”
Annual Conference on Composites, Materials, and Structures
, Cocoa Beach, FL, Jan., Document ID: 20150004096.https://ntrs.nasa.gov/citations/20150004096
55.
Barnard
,
H. S.
,
MacDowell
,
A. A.
,
Parkinson
,
D. Y.
,
Mandal
,
P.
,
Czabaj
,
M.
,
Gao
,
Y.
,
Maillet
,
E.
,
Blank
,
B.
,
Larson
,
N. M.
,
Ritchie
,
R. O.
,
Gludovatz
,
B.
,
Acevedo
,
C.
, and
Liu
,
D.
,
2017
, “
Synchrotron X-Ray Micro-Tomography at the Advanced Light Source: Developments in High-Temperature In-Situ Mechanical Testing
,”
J. Phys.: Conf. Ser.
,
849
(
1
), p.
012043
.10.1088/1742-6596/849/1/012043
56.
Evans
,
A. G.
, and
Zok
,
F. W.
,
1994
, “
The Physics and Mechanics of Fibre-Reinforced Brittle Matrix Composites
,”
J. Mater. Sci.
,
29
(
15
), pp.
3857
3896
.10.1007/BF00355946
57.
Morscher
,
G. N.
, and
Gordon
,
N. A.
,
2017
, “
Acoustic Emission and Electrical Resistance in SiC-Based Laminate Ceramic Composites Tested Under Tensile Loading
,”
J. Eur. Ceram. Soc.
,
37
(
13
), pp.
3861
3872
.10.1016/j.jeurceramsoc.2017.05.003
58.
Morscher
,
G. N.
, and
Maxwell
,
R.
,
2019
, “
Monitoring Tensile Fatigue Crack Growth and Fiber Failure Around a Notch in Laminate SIC/SIC Composites Utilizing Acoustic Emission, Electrical Resistance, and Digital Image Correlation
,”
J. Eur. Ceram. Soc.
,
39
(
2–3
), pp.
229
239
.10.1016/j.jeurceramsoc.2018.08.049
59.
Maxwell
,
R.
, and
Morscher
,
G. N.
,
2017
, “
Damage Monitoring of MI CMCS With Stress Concentrations Utilizing Acoustic Emission and Electrical Resistance
,”
Advances in High Temperature Ceramic Matrix Compo Sites and Materials for Sustainable Development; Ceramic Transactions
,
Wiley
, Hoboken, NJ, Vol. CCLXIII, pp.
283
296
.10.1002/9781119407270.ch28
60.
Momon
,
S.
,
Moevus
,
M.
,
Godin
,
N.
,
R'Mili
,
M.
,
Reynaud
,
P.
,
Fantozzi
,
G.
, and
Fayolle
,
G.
,
2010
, “
Acoustic Emission and Lifetime Prediction During Static Fatigue Tests on Ceramic-Matrix-Composite at High Temperature Under Air
,”
Compos. Part A: Appl. Sci. Manuf.
,
41
(
7
), pp.
913
918
.07-01.10.1016/j.compositesa.2010.03.008
61.
Almeida
,
R. S. M.
,
Magalhães
,
M. D.
,
Karim
,
M. N.
,
Tushtev
,
K.
, and
Rezwan
,
K.
,
2023
, “
Identifying Damage Mechanisms of Composites by Acoustic Emission and Supervised Machine Learning
,”
Mater. Des.
,
227
, p.
111745
.10.1016/j.matdes.2023.111745
62.
Chateau
,
C.
,
Gélébart
,
L.
,
Bornert
,
M.
,
Crepin
,
J.
,
Caldemaison
,
D.
,
Boller
,
E.
,
Sauder
,
C.
,
Langer
,
M.
, and
Ludwig
,
W.
,
2010
, “
Experimental Characterisation of Damage in SiC/SiC Minicomposites
,”
EPJ Web Conf.
,
6
, p.
20002
.10.1051/epjconf/20100620002
63.
Maillet
,
E.
,
Godin
,
N.
,
R'Mili
,
M.
,
Reynaud
,
P.
,
Fantozzi
,
G.
, and
Lamon
,
J.
,
2014
, “
Damage Monitoring and Identification in SiC/SiC Minicomposites Using Combined Acousto-Ultrasonics and Acoustic Emission
,”
Compos. Part A: Appl. Sci. Manuf.
,
57
, pp.
8
15
.10.1016/j.compositesa.2013.10.010
64.
Morscher
,
G.
, and
Han
,
Z.
,
2018
, “
Damage Determination in Ceramic Composites Subject to Tensile Fatigue Using Acoustic Emission
,”
Materials
,
11
(
12
), p.
2477
.10.3390/ma11122477
65.
Baker
,
C.
,
Morscher
,
G. N.
,
Pujar
,
V. V.
, and
Lemanski
,
J. R.
,
2015
, “
Transverse Cracking in Carbon Fiber Reinforced Polymer Composites: Modal Acoustic Emission and Peak Frequency Analysis
,”
Compos. Sci. Technol.
,
116
, pp.
26
32
.10.1016/j.compscitech.2015.05.005
66.
Smith
,
C. E.
,
2016
, “
Electrical Resistance Changes of Melt Infiltrated SiC/SiC Subject to Long-Term Tensile Loading at Elevated Temperatures
,”
Ph.D. thesis
,
University of Akron
, OhioLINK Electronic Theses and Dissertations Center, Akron, OH.http://rave.ohiolink.edu/etdc/view?acc_num=akron1461690076
67.
Mhamdi
,
L.
,
2015
, “
Seismology-Based Approaches for the Quantitative Acoustic Emission Monitoring of Concrete Structures
,”
Ph.D. thesis
,
University of Delaware
, Newark, DE.https://udspace.udel.edu/bitstreams/75630eed-49a9-4acf-a691-ef97523198df/download
68.
Ohno
,
K.
, and
Ohtsu
,
M.
,
2010
, “
Crack Classification in Concrete Based on Acoustic Emission
,”
Const. Build. Mater.
,
24
(
12
), pp.
2339
2346
.10.1016/j.conbuildmat.2010.05.004
69.
Prosser
,
W.
,
Allison
,
S.
,
Woodard
,
S.
,
Wincheski
,
R.
,
Cooper
,
E.
,
Price
,
D.
,
Hedley
,
M.
,
Prokopenko
,
M.
,
Scott
,
D.
, and
Tessler
,
A.
,
2004
, “
Structural Health Management for Future Aerospace Vehicles
,”
2nd Australasian Workshop on Structural Health Monitoring
, Melbourne, Australia, Dec. 16, Document ID: 20040200975.https://ntrs.nasa.gov/citations/20040200975
70.
Madaras
,
E.
,
Winfree
,
W.
,
Prosser
,
W.
,
Wincheski
,
R.
, and
Cramer
,
E.
,
2005
, “
Nondestructive Evaluation for the Space Shuttle's Wing Leading Edge
,”
AIAA
Paper No. 2005-3630.10.2514/6.2005-3630
71.
Richards
,
W. L.
,
Madaras
,
E. I.
,
Prosser
,
W. H.
, and
Studor
,
G.
,
2013
, “
NASA Applications of Structural Health Monitoring Technology
,”
International Workshop on Structural Health Monitoring
, Stanford University, Sept. 10, Document ID: 20140011091.https://ntrs.nasa.gov/api/citations/20140011091/downloads/20140011091.pdf
72.
Seshadri
,
B. R.
, and
Krishnamurthy
,
T.
,
2017
, “
Structural Health Management of Damaged Aircraft Structures Using Digital Twin Concept
,”
25th AIAA/AHS Adaptive Structures Conference
, Grapevine, TX, Jan. 9, p.
1675
.https://ntrs.nasa.gov/api/citations/20170001027/downloads/20170001027.pdf
73.
Glaessgen
,
E.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
AIAA
Paper No. 2012-1818.10.2514/6.2012-1818
74.
Bansal
,
N. P.
, and
Lamon
,
J.
,
2014
,
Ceramic Matrix Composites: Materials, Modeling and Technology
,
Wiley
, Hoboken, NJ.
75.
Sause
,
M. G.
,
2016
,
In Situ Monitoring of Fiber-Reinforced Composites: Theory, Basic Concepts, Methods, and Applications
, Springer Nature
, Switzerland.
76.
Grosse
,
C. U.
,
Ohtsu
,
M.
,
Aggelis
,
D. G.
, and
Shiotani
,
T.
,
2021
,
Acoustic Emission Testing: Basics for Research–Applications in Engineering
,
Springer Nature Switzerland AG
, Switzerland.
77.
Lamon
,
J.
,
2001
, “
A Micromechanics-Based Approach to the Mechanical Behavior of Brittle-Matrix Composites
,”
Compos. Sci. Technol.
,
61
(
15
), pp.
2259
2272
.10.1016/S0266-3538(01)00120-8
78.
Curtin
,
W. A.
,
2000
, “
Stress-Strain Behavior of Brittle Matrix Composites
,”
Comprehensive Composite Materials
, Elsevier Science, Amsterdam, The Netherlands, pp.
44
76
.
79.
Evans
,
A. G.
,
Zok
,
F. W.
, and
McMeeking
,
R. M.
,
1995
, “
Fatigue of Ceramic Matrix Composites
,”
Acta Metall. Mater.
,
43
(
3
), pp.
859
875
.10.1016/0956-7151(94)00304-Z
80.
Chateau
,
C.
,
Gélébart
,
L.
,
Bornert
,
M.
,
Crépin
,
J.
,
Boller
,
E.
,
Sauder
,
C.
, and
Ludwig
,
W.
,
2011
, “
In Situ X-Ray Microtomography Characterization of Damage in SiCf/SiC Minicomposites
,”
Compos. Sci. Technol.
,
71
(
6
), pp.
916
924
.10.1016/j.compscitech.2011.02.008
81.
Castelier
,
E.
,
Gelebart
,
L.
,
Lacour
,
C.
, and
Lantuejoul
,
C.
,
2010
, “
Three Consistent Approaches of the Multiple Cracking Process in 1D Composites
,”
Compos. Sci. Technol.
,
70
(
15
), pp.
2146
2153
.10.1016/j.compscitech.2010.08.014
82.
Chateau
,
C.
,
Gélébart
,
L.
,
Bornert
,
M.
,
Crépin
,
J.
,
Caldemaison
,
D.
, and
Sauder
,
C.
,
2014
, “
Modeling of Damage in Unidirectional Ceramic Matrix Composites and Multi-Scale Experimental Validation on Third Generation SiC/SiC Minicomposites
,”
J. Mech. Phys. Solids
,
63
, pp.
298
319
.10.1016/j.jmps.2013.09.001
83.
Sevener
,
K. M.
,
Tracy
,
J. M.
,
Chen
,
Z.
,
Kiser
,
J. D.
, and
Daly
,
S.
,
2017
, “
Crack Opening Behavior in Ceramic Matrix Composites
,”
J. Am. Ceram. Soc.
,
100
(
10
), pp.
4734
4747
.10.1111/jace.14976
84.
Muir
,
C.
,
Swaminathan
,
B.
,
Musaffar
,
A. K.
,
McCarthy
,
N. R.
,
Almansour
,
A. S.
,
Pollock
,
T. M.
,
Kiser
,
J. D.
,
Smith
,
C.
,
Daly
,
S.
, and
Sevener
,
K.
,
2023
, “
In Situ Crack Opening Displacement Growth Rates of SiC/SiC Ceramic Matrix Minicomposites
,”
J. Eur. Ceram. Soc.
,
43
(
9
), pp.
3950
3958
.10.1016/j.jeurceramsoc.2023.01.061
85.
Detwiler
,
K.
,
Hunt
,
R.
, and
Opila
,
E.
,
2023
, “
In-Situ Observation of Micro-Cracking in a SiC/BN/SiC Ceramic Matrix Composite Under Tension
,”
Open Ceram.
,
14
, p.
100366
.10.1016/j.oceram.2023.100366
86.
Almansour
,
A. S.
,
Kalluri
,
S.
,
Smith
,
C. E.
, and
Kiser
,
J. D.
, “
High-Cycle Fatigue Behavior of SiC-Based Ceramic Matrix Composites (CMCs) at High Temperatures
,”
11th International Conference of High Temperature Ceramic Matrix Composites
, Jeju, Korea, Aug. 27, Document ID: 20230012492.https://ntrs.nasa.gov/citations/20230012492
87.
Brockman
,
C.
,
Almansour
,
A.
,
Kiser
,
J.
,
Goldberg
,
R.
, and
Sarin
,
P.
, “
High-Temperature Mechanical Tensile Testing of Unidirectional SiC/SiC Composites Using a Versatile Lamp Furnace
,”
11th International Conference of High Temperature Ceramic Matrix Composites
, Jeju, Korea, Aug. 27, Document ID: 20230012487.https://ntrs.nasa.gov/citations/20230012487
88.
Almansour
,
A. S.
, and
Morscher
,
G. N.
,
2020
, “
Tensile Creep Behavior of SiCf/SiC Ceramic Matrix Minicomposites
,”
J. Eur. Ceram. Soc.
,
40
(
15
), pp.
5132
5146
.10.1016/j.jeurceramsoc.2020.07.012
89.
Goldberg
,
R. K.
,
Almansour
,
A. S.
, and
Sullivan
,
R. M.
,
2022
, “
Analytical Simulation of Effects of Local Mechanisms on Tensile Response of Ceramic Matrix Minicomposites
,”
J. Eur. Ceram. Soc.
,
42
(
15
), pp.
6846
6864
.10.1016/j.jeurceramsoc.2022.07.042
90.
Rokhlin
,
S.
,
Chimenti
,
D.
, and
Nagy
,
P.
,
2011
,
Physical Ultrasonics of Composites
,
Oxford University Press
, New York.
91.
Rose
,
J. L.
,
2014
,
Ultrasonic Guided Waves in Solid Media
,
Cambridge University Press
, New York.
92.
Nayfeh
,
A. H.
,
1995
,
Wave Propagation in Layered Anisotropic Media, With Applications to Composites
,
Elsevier Science B.V
, Amsterdam, The Netherlands.
93.
Goujon
,
L.
, and
Baboux
,
J. C.
,
2003
, “
Behaviour of Acoustic Emission Sensors Using Broadband Calibration Techniques
,”
Meas. Sci. Technol.
,
14
(
7
), pp.
903
908
.10.1088/0957-0233/14/7/302
94.
Kolsky
,
H.
,
1963
,
Stress Waves in Solids
,
Dover Publications
, New York.
95.
Graff
,
K. F.
,
1991
,
Wave Motion in Elastic Solids
,
Dover Publications
, New York.
96.
Achenbach
,
J. D.
,
1973
,
Wave Propagation in Elastic Solids
,
North-Holland Publishing Company
, New York.
97.
Prosser
,
W. H.
,
Hamstad
,
M. A.
,
Gary
,
J.
, and
OGallagher
,
A.
,
1999
, “
Reflections of AE Waves in Finite Plates: Finite Element Modeling and Experimental Measurements
,”
J. Acoust. Emiss.
,
17
(
1
), pp.
37
47
.https://www.researchgate.net/publication/4707095_Reflections_of_AE_Waves_in_Finite_Plates_Finite_Element_Modeling_and_Experimental_Measurements
98.
Wu
,
B. S.
, and
McLaskey
,
G. C.
,
2018
, “
Broadband Calibration of Acoustic Emission and Ultrasonic Sensors From Generalized Ray Theory and Finite Element Models
,”
J. Nondestruct. Eval.
,
37
(
1
), p.
8
.10.1007/s10921-018-0462-8
99.
Breckenridge
,
F. R.
,
Tschiegg
,
C. E.
, and
Greenspan
,
M.
,
1975
, “
Acoustic Emission: Some Applications of Lamb's Problem
,”
J. Acoust. Soc. Am.
,
57
(
3
), pp.
626
631
.10.1121/1.380478
100.
Scruby
,
C. B.
,
Stacey
,
K. A.
, and
Baldwin
,
G. R.
,
1986
, “
Defect Characterisation in Three Dimensions by Acoustic Emission
,”
J. Phys. D: Appl. Phys.
,
19
(
9
), pp.
1597
1612
.10.1088/0022-3727/19/9/006
101.
Theobald
,
P.
, and
Pocklington
,
R.
,
2010
, “
Velocity Sensitivity Calibration of AE Sensors Using the Through Wave Method and Laser Interferometry
,”
29th EWGAE
, Vienna, Austria, Sept. 8–10.
102.
Lamb
,
H.
,
1917
, “
On Waves in an Elastic Plate
,”
Proc. Royal Soc.
, 93(648), pp.
114
128
.
103.
Wang
,
L.
, and
Yuan
,
F. G.
,
2007
, “
Group Velocity and Characteristic Wave Curves of Lamb Waves in Composites: Modeling and Experiments
,”
Compos. Sci. Technol.
,
67
(
7–8
), pp.
1370
1384
.10.1016/j.compscitech.2006.09.023
104.
Gorman
,
M. R.
,
1991
, “
Plate Wave Acoustic Emission
,”
J. Acoust. Soc. Am.
,
90
(
1
), pp.
358
364
.10.1121/1.401258
105.
Ziola
,
S. M.
, and
Gorman
,
M. R.
,
1991
, “
Source Location in Thin Plates Using Cross-Correlation
,”
J. Acoust. Soc. Am.
,
90
(
5
), pp.
2551
2556
.10.1121/1.402348
106.
Hamstad
,
M. A.
, and
Gary
,
J.
,
2002
, “
A Wavelet Transform Applied to Acoustic Emission Signals: Part 2: Source Location
,”
J. Acoust. Emiss.
,
20
(
1
), pp.
62
82
.https://www.researchgate.net/publication/241829702_A_wavelet_transform_applied_to_acoustic_emission_signals_Part_2_Source_location
107.
Hamstad
,
M. A.
,
2010
, “
On Lamb Modes as a Function of Acoustic Emission Source Rise Time
,”
J. Acoust. Emiss.
,
28
(
1
), pp.
41
58
.https://www.nist.gov/publications/lamb-modesfunction-acoustic-emission-source-rise-time
108.
Hamstad
,
M. A.
,
O'Gallagher
,
A.
, and
Gary
,
J. M.
,
2002
, “
Examination of the Application of a Wavelet Transformation to Acoustic Emission Signals: Part 1: Source Identification
,”
J. Acoust. Emiss.
,
20
(
1
), pp.
39
61
.https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=851301
109.
Ciampa
,
F.
, and
Meo
,
M.
,
2010
, “
Acoustic Emission Source Localization and Velocity Determination of the Fundamental Mode A0 Using Wavelet Analysis and a Newton-Based Optimization Technique
,”
Smart Mater. Struct.
,
19
(
4
), p.
045027
.10.1088/0964-1726/19/4/045027
110.
Gorman
,
M. R.
, and
Prosser
,
W. H.
,
1991
, “
AE Source Orientation by Plate Wave Analysis
,”
J. Acoust. Emiss.
,
9
(
4
), pp.
283
288
.https://ntrs.nasa.gov/citations/20040121066
111.
Dubuc
,
B.
,
Ebrahimkhanlou
,
A.
,
Livadiotis
,
S.
, and
Salamone
,
S.
,
2019
, “
Inversion Algorithm for Lamb-Wave-Based Depth Characterization of Acoustic Emission Sources in Plate-Like Structures
,”
Ultrasonics
,
99
, p.
105975
.10.1016/j.ultras.2019.105975
112.
Rose
,
J. L.
,
2021
, “
Guided Wave Studies for Enhanced Acoustic Emission Inspection
,”
Res. Nondestruct. Eval.
,
32
(
5
), pp.
192
209
.10.1080/09349847.2021.1959692
113.
Dubuc
,
B.
,
Livadiotis
,
S.
,
Ebrahimkhanlou
,
A.
, and
Salamone
,
S.
,
2020
, “
Crack-Induced Guided Wave Motion and Modal Excitability in Plates Using Elastodynamic Reciprocity
,”
J. Sound Vib.
,
476
, p.
115287
.10.1016/j.jsv.2020.115287
114.
Dubuc
,
B.
,
2024
, “
Crack Length Directivity Effects on Guided-Wave Acoustic Emission: Numerical Investigation of Radiation Patterns
,”
Ultrasonics
,
137
, p.
107190
.10.1016/j.ultras.2023.107190
115.
Ohtsu
,
M.
, and
Ono
,
K.
,
1986
, “
The Generalized Theory and Source Representation of Acoustic Emission
,”
J. Acoust. Emiss.
,
5
(
1
), pp.
124
133
.
116.
Ohtsu
,
M.
,
Ohno
,
K.
, and
Hamstad
,
M. A.
,
2005
, “
Moment Tensors of in-Plane Waves Analyzed by Sigma-2D
,”
J. Acoust. Emiss.
,
23
(
1
), pp.
47
63
.https://go.gale.com/ps/i.do?p=AONE&u=googlescholar&id=GALE|A187844231&v=2.1&it=r&sid=AONE&asid=5928583c
117.
Hamam
,
Z.
,
Godin
,
N.
,
Fusco
,
C.
,
Doitrand
,
A.
, and
Monnier
,
T.
,
2021
, “
Acoustic Emission Signal Due to Fiber Break and Fiber Matrix Debonding in Model Composite: A Computational Study
,”
Appl. Sci.
,
11
(
18
), p.
8406
.10.3390/app11188406
118.
Scruby
,
C. B.
,
Wadley
,
H. N. G.
, and
Hill
,
J. J.
,
1983
, “
Dynamic Elastic Displacements at the Surface of an Elastic Half-Space Due to Defect Sources
,”
J. Phys. D: Appl. Phys.
,
16
(
6
), pp.
1069
1083
.10.1088/0022-3727/16/6/015
119.
Sato
,
T.
,
Takemoto
,
M.
, and
Ono
,
K.
,
1999
, “
Effect of Fracture Dynamics in Thin Plate on the Waveform and Radiation Pattern of the Lamb Waves
,”
Japanese J. Appl. Phys.
,
38
(
5S
), p.
3193
.10.1143/JJAP.38.3193
120.
McLaskey
,
G. C.
, and
Glaser
,
S. D.
,
2012
, “
Acoustic Emission Sensor Calibration for Absolute Source Measurements
,”
J. Nondestruct. Eval.
,
31
(
2
), pp.
157
168
.10.1007/s10921-012-0131-2
121.
Ono
,
K.
,
2005
, “
Current Understanding of Mechanisms of Acoustic Emission
,”
J. Strain Anal. Eng. Des.
,
40
(
1
), pp.
1
15
.10.1243/030932405X7674
122.
McLaskey
,
G. C.
, and
Glaser
,
S. D.
,
2010
, “
Hertzian Impact: Experimental Study of the Force Pulse and Resulting Stress Waves
,”
J. Acoust. Soc. Am.
,
128
(
3
), pp.
1087
1096
.10.1121/1.3466847
123.
Breckenridge
,
F.
,
Proctor
,
T.
,
Hsu
,
N.
,
Frick
,
S.
,
Eitzen
,
D.
,
Standards
,
N. I. O.
, and
Md
,
T. G.
,
1990
, “
Progress in Ultrasonic Measurements Research in 1990: Transient Sources for Acoustic Emission Work
,” NIST, Gaithersburg, MD.https://apps.dtic.mil/sti/tr/pdf/ADA234965.pdf
124.
Buttle
,
D. J.
, and
Scruby
,
C. B.
,
1990
, “
Characterization of Particle Impact by Quantitative Acoustic Emission
,”
Wear
,
137
(
1
), pp.
63
90
.10.1016/0043-1648(90)90018-6
125.
Eitzen
,
D. G.
, and
Wadley
,
H. N. G.
,
1984
, “
Acoustic Emission: Establishing the Fundamentals
,”
J. Res. Natl. Bureau Standards
,
89
(
1
), pp.
75
100
.10.6028/jres.089.008
126.
Sachse
,
W.
, and
Kim
,
K.
,
1987
, “
Quantitative Acoustic Emission and Failure Mechanics of Composite Materials
,”
Ultrasonics
,
25
(
4
), pp.
195
203
.10.1016/0041-624X(87)90033-3
127.
Enoki
,
M.
, and
Kishi
,
T.
,
1988
, “
Theory and Analysis of Deformation Moment Tensor Due to Microcracking
,”
Int. J. Fract.
,
38
(
4
), pp.
295
310
.10.1007/BF00019805
128.
To
,
A. C.
, and
Glaser
,
S. D.
,
2005
, “
Full Waveform Inversion of a 3-D Source Inside an Artificial Rock
,”
J. Sound Vib.
,
285
(
4–5
), pp.
835
857
.10.1016/j.jsv.2004.09.001
129.
Leser
,
W. P.
,
Yuan
,
F.-G.
, and
Leser
,
W. P.
,
2013
, “
Band-Limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method
,”
AIAA
Paper No. 2013–1655.10.2514/6.2013-1655
130.
Suzuki
,
H.
,
Kinjo
,
T.
,
Saito
,
N.
,
Takemoto
,
M.
, and
Ono
,
K.
,
2000
, “
Integrity Evaluation of Glass-Fiber Composites With Varied Fiber/Matrix Interfacial Strength Using Acoustic Emission
,”
NDT E Int.
,
33
(
3
), pp.
173
180
.10.1016/S0963-8695(99)00031-6
131.
Hamstad
,
M. A.
,
2007
, “
Acoustic Emission Signals Generated by Monopole (Pencil Lead Break) Versus Dipole Sources: Finite Element Modeling and Experiments
,”
J. Acoust. Emiss
,
25
(
1
), pp.
92
106
.https://www.ndt.net/article/jae/papers/25-092.pdf
132.
Hamam
,
Z.
,
Godin
,
N.
,
Reynaud
,
P.
,
Fusco
,
C.
,
Carrère
,
N.
, and
Doitrand
,
A.
,
2022
, “
Transverse Cracking Induced Acoustic Emission in Carbon Fiber-Epoxy Matrix Composite Laminates
,”
Materials
,
15
(
1
), p.
394
.10.3390/ma15010394
133.
Oz
,
F. E.
,
Ersoy
,
N.
, and
Lomov
,
S. V.
,
2017
, “
Do High Frequency Acoustic Emission Events Always Represent Fibre Failure in CFRP Laminates?
,”
Compos. Part A: Appl. Sci. Manuf.
,
103
, pp.
230
235
.10.1016/j.compositesa.2017.10.013
134.
Muir
,
C.
,
Tulshibagwale
,
N.
,
Furst
,
A.
,
Swaminathan
,
B.
,
Almansour
,
A. S.
,
Sevener
,
K.
,
Presby
,
M.
,
Kiser
,
J. D.
,
Pollock
,
T. M.
,
Daly
,
S.
, and
Smith
,
C.
,
2023
, “
Quantitative Benchmarking of Acoustic Emission Machine Learning Frameworks for Damage Mechanism Identification
,”
Integr. Mater. Manuf. Innov.
,
12
(
1
), pp.
70
81
.10.1007/s40192-023-00293-8
135.
Sause
,
M. G.
,
2018
, “
On Use of Signal Features for Acoustic Emission Source Identification in Fibre-Reinforced Composites
,”
33rd European Conference on Acoustic Emission Testing
, Senlis, France, Sept. 12–14.https://d-nb.info/1212797426/34
136.
ASTM
,
2021
, “
Standard Test Method for Primary Calibration of Acoustic Emission Sensors
,” ASTM International, West Conshohocken, PA, pp.
1
7
.
137.
ASTM,
2017
, “
Standard Guide for Mounting Piezoelectric Acoustic Emission Sensors
,” ASTM International, West Conshohocken, PA, pp.
1
7
.
138.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2000
,
Theory and Design for Mechanical Measurements
, 3rd ed.,
Wiley
, New York.
139.
Scruby
,
C. B.
, and
Wadley
,
H. N. G.
,
1978
, “
A Calibrated Capacitance Transducer for the Detection of Acoustic Emission
,”
J. Phys. D: Appl. Phys.
,
11
(
11
), pp.
1487
1494
.10.1088/0022-3727/11/11/007
140.
Breckenridge
,
F. R.
, and
Greenspan
,
M.
,
1981
, “
Surface-Wave Displacement: Absolute Measurements Using a Capacitive Transducer
,”
J. Acoust. Soc. Am.
,
69
(
4
), pp.
1177
1185
.10.1121/1.385698
141.
Greenspan
,
M.
,
1987
, “
The NBS Conical Transducer: Analysis
,”
J. Acoust. Soc. Am.
,
81
(
1
), pp.
173
183
.10.1121/1.395027
142.
Sause
,
M. G. R.
,
Hamstad
,
M. A.
, and
Horn
,
S.
,
2012
, “
Finite Element Modeling of Conical Acoustic Emission Sensors and Corresponding Experiments
,”
Sens. Actuators A: Phys.
,
184
, pp.
64
71
.10.1016/j.sna.2012.06.034
143.
Zelenyak
,
A.-M.
,
Hamstad
,
M. A.
, and
Sause
,
M. G. R.
,
2015
, “
Modeling of Acoustic Emission Signal Propagation in Waveguides
,”
Sensors (Basel, Switzerland)
,
15
(
5
), pp.
11805
11822
.10.3390/s150511805
144.
McLaskey
,
G. C.
, and
Glaser
,
S. D.
,
2009
, “
High-Fidelity Conical Piezoelectric Transducers and Finite Element Models Utilized to Quantify Elastic Waves Generated From Ball Collisions
,”
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
, San Diego, CA, Mar. 30, Vol.
7292
, pp.
264
271
.10.1117/12.817606
145.
Theobald
,
P. D.
,
Esward
,
T. J.
,
Dowson
,
S. P.
, and
Preston
,
R. C.
,
2005
, “
Acoustic Emission Transducers-Development of a Facility for Traceable Out-of-Plane Displacement Calibration
,”
Ultrasonics
,
43
(
5
), pp.
343
350
.10.1016/j.ultras.2004.07.007
146.
Ono
,
K.
,
2016
, “
Calibration Methods of Acoustic Emission Sensors
,”
Materials (Basel, Switzerland)
,
9
(
7
), p.
508
.10.3390/ma9070508
147.
Matsuda
,
Y.
, and
Nagai
,
S.
,
1994
, “
Surface Wave Calibration of Acoustic Emission Sensors With Laser-Generated Ultrasound
,”
J. Acoust. Soc. Jpn. (E)
,
15
(
4
), pp.
255
259
.10.1250/ast.15.255
148.
Giurgiutiu
,
V.
,
Xu
,
B.
, and
Liu
,
W.
, “
Development and Testing of High-Temperature Piezoelectric Wafer Active Sensors for Extreme Environments
,”
Struct. Health Monit.
,
9
(
6
), pp.
513
525
.10.1177/1475921710365389
149.
Guel
,
N.
,
Hamam
,
Z.
,
Godin
,
N.
,
Reynaud
,
P.
,
Caty
,
O.
,
Bouillon
,
F.
, and
Paillassa
,
A.
,
2020
, “
Data Merging of AE Sensors With Different Frequency Resolution for the Detection and Identification of Damage in Oxide-Based Ceramic Matrix Composites
,”
Materials
,
13
(
20
), p.
4691
.10.3390/ma13204691
150.
Scruby
,
C. B.
,
1987
, “
An Introduction to Acoustic Emission
,”
J. Phys. E: Sci. Instrum.
,
20
(
8
), pp.
946
953
.10.1088/0022-3735/20/8/001
151.
Shrestha
,
S.
,
Kannan
,
M.
,
Morscher
,
G. N.
,
Presby
,
M. J.
, and
Mostafa Razavi
,
S.
,
2021
, “
In-Situ Fatigue Life Analysis by Modal Acoustic Emission, Direct Current Potential Drop and Digital Image Correlation for Steel
,”
Int. J. Fatigue
,
142
, p.
105924
.10.1016/j.ijfatigue.2020.105924
152.
Theobald
,
P. D.
,
2009
, “
Optical Calibration for Both Out-of-Plane and in-Plane Displacement Sensitivity of Acoustic Emission Sensors
,”
Ultrasonics
,
49
(
8
), pp.
623
627
.10.1016/j.ultras.2009.03.004
153.
Sause
,
M. G.
, and
Hamstad
,
M. A.
,
2018
, “
Numerical Modeling of Existing Acoustic Emission Sensor Absolute Calibration Approaches
,”
Sens. Actuators A: Phys.
,
269
, pp.
294
307
.10.1016/j.sna.2017.11.057
154.
McLaskey
,
G. C.
,
Lockner
,
D. A.
,
Kilgore
,
B. D.
, and
Beeler
,
N. M.
,
2015
, “
A Robust Calibration Technique for Acoustic Emission Systems Based on Momentum Transfer From a Ball Drop
,”
Bull. Seismol.Soc. Am.
,
105
(
1
), pp.
257
271
.10.1785/0120140170
155.
Keprt
,
J.
, and
Benes
,
P.
,
2009
, “
The Determination of Uncertainty in the Calibration of Acoustic Emission Sensors
,”
Int. J. Microstruct. Mater. Prop.
,
4
(
1
), pp.
85
103
.10.1504/IJMMP.2009.028435
156.
Keprt
,
J.
, and
Benes
,
P.
,
2008
, “
A Comparison of AE Sensor Calibration Methods
,”
J. Acoust. Emission
,
26
(
1
), pp.
60
71
.
157.
Maillet
,
E.
,
Godin
,
N.
,
R'Mili
,
M.
,
Reynaud
,
P.
,
Lamon
,
J.
, and
Fantozzi
,
G.
,
2012
, “
Analysis of Acoustic Emission Energy Release During Static Fatigue Tests at Intermediate Temperatures on Ceramic Matrix Composites: Towards Rupture Time Prediction
,”
Compos. Sci. Technol.
,
72
(
9
), pp.
1001
1007
.10.1016/j.compscitech.2012.03.011
158.
Kundu
,
T.
,
Das
,
S.
,
Martin
,
S. A.
, and
Jata
,
K. V.
,
2008
, “
Locating Point of Impact in Anisotropic Fiber Reinforced Composite Plates
,”
Ultrasonics
,
48
(
3
), pp.
193
201
.10.1016/j.ultras.2007.12.001
159.
Saha
,
S.
,
Kumar Mallisetty
,
P.
,
Sen
,
S.
, and
Giri
,
S.
,
2022
, “
Design and Development of a High-Speed Data Acquisition System for Acquiring Acoustic Emission Signals
,”
Mater. Today: Proc.
,
66
, pp.
3830
3837
.10.1016/j.matpr.2022.06.252
160.
Wirtz
,
S. F.
,
Cunha
,
A. P. A.
,
Labusch
,
M.
,
Marzun
,
G.
,
Barcikowski
,
S.
, and
Söffker
,
D.
,
2018
, “
Development of a Low-Cost FPGA-Based Measurement System for Real-Time Processing of Acoustic Emission Data: Proof of Concept Using Control of Pulsed Laser Ablation in Liquids
,”
Sensors
,
18
(
6
), p.
1775
.10.3390/s18061775
161.
Zimmerman
,
A. T.
, and
Lynch
,
J. P.
,
2013
, “
A Wireless Data Acquisition System for Acoustic Emission Testing
,”
AIP Conf. Proc.
,
1511
(
1
), pp.
1609
1616
.10.1063/1.4789234
162.
Hamstad
,
M. A.
,
2006
, “
Small Diameter Waveguide for Wideband Acoustic Emission
,”
J. Acoust. Emiss.
, 24(1), pp.
234
247
.https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50488
163.
Yu
,
F.
, and
Okabe
,
Y.
,
2017
, “
Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000∘C Environment
,”
Sensors
,
17
(
12
), p.
2908
.10.3390/s17122908
164.
Sause
,
M. G. R.
,
2011
, “
Investigation of Pencil-Lead Breaks as Acoustic Emissions Sources
,”
J. Acoust. Emiss.
,
29
(
1
), pp.
184
196
.
165.
Hsu
,
N.
,
Simmons
,
J.
, and
Hardy
,
S.
,
1977
, “
Approach to Acoustic Emission Signal Analysis: Theory and Experiment
,”
Mater. Eval.
,
35
(
10
), pp.
100
106
.https://dr.lib.iastate.edu/entities/publication/96f709afbd2e-49bf-aafa-596fa5cc8e61
166.
Morscher
,
G. N.
, and
Gyekenyesi
,
A. L.
,
2002
, “
The Velocity and Attenuation of Acoustic Emission Waves in SiC/SiC Composites Loaded in Tension
,”
Compos. Sci. Technol.
,
62
(
9
), pp.
1171
1180
.10.1016/S0266-3538(02)00065-9
167.
Kharrat
,
M.
,
Placet
,
V.
,
Ramasso
,
E.
, and
Boubakar
,
M. L.
,
2018
, “
Influence of Damage Accumulation Under Fatigue Loading on the AE-Based Health Assessment of Composite Materials: Wave Distortion and AE-Features Evolution as a Function of Damage Level
,”
Compos. Part A: Appl. Sci. Manuf.
,
109
, pp.
615
627
.10.1016/j.compositesa.2016.03.020
168.
Hajzargerbashi
,
T.
,
Kundu
,
T.
, and
Bland
,
S.
,
2011
, “
An Improved Algorithm for Detecting Point of Impact in Anisotropic Inhomogeneous Plates
,”
Ultrasonics
,
51
(
3
), pp.
317
324
.10.1016/j.ultras.2010.10.005
169.
Baxter
,
M. G.
,
Pullin
,
R.
,
Holford
,
K. M.
, and
Evans
,
S. L.
,
2007
, “
Delta T Source Location for Acoustic Emission
,”
Mech. Syst. Signal Process.
,
21
(
3
), pp.
1512
1520
.10.1016/j.ymssp.2006.05.003
170.
Maillet
,
E.
, and
Morscher
,
G. N.
,
2015
, “
Waveform-Based Selection of Acoustic Emission Events Generated by Damage in Composite Materials
,”
Mech. Syst. Signal Process.
,
52-53
, pp.
217
227
.10.1016/j.ymssp.2014.08.001
171.
Ebrahimkhanlou
,
A.
,
Dubuc
,
B.
, and
Salamone
,
S.
,
2019
, “
A Generalizable Deep Learning Framework for Localizing and Characterizing Acoustic Emission Sources in Riveted Metallic Panels
,”
Mech. Syst. Signal Process.
,
130
, pp.
248
272
.10.1016/j.ymssp.2019.04.050
172.
Godin
,
N.
,
Reynaud
,
P.
, and
Fantozzi
,
G.
,
2018
,
Acoustic Emission and Durability of Composite Materials
, 1st ed.,
Wiley
, Hoboken, NJ; ISTE, London, UK.
173.
Kurz
,
J. H.
,
Grosse
,
C. U.
, and
Reinhardt
,
H.-W.
,
2005
, “
Strategies for Reliable Automatic Onset Time Picking of Acoustic Emissions and of Ultrasound Signals in Concrete
,”
Ultrasonics
,
43
(
7
), pp.
538
546
.10.1016/j.ultras.2004.12.005
174.
Sedlak
,
P.
,
Hirose
,
Y.
, and
Enoki
,
M.
,
2013
, “
Acoustic Emission Localization in Thin Multi-Layer Plates Using First-Arrival Determination
,”
Mech. Syst. Signal Process.
,
36
(
2
), pp.
636
649
.10.1016/j.ymssp.2012.11.008
175.
Leonard
,
M.
,
2000
, “
Comparison of Manual and Automatic Onset Time Picking
,”
Bull. Seismol. Soc. Am.
,
90
(
6
), pp.
1384
1390
.10.1785/0120000026
176.
Kundu
,
T.
,
Das
,
S.
, and
Jata
,
K. V.
,
2007
, “
Point of Impact Prediction in Isotropic and Anisotropic Plates From the Acoustic Emission Data
,”
J. Acoust. Soc. Am.
,
122
(
4
), pp.
2057
2066
.10.1121/1.2775322
177.
Dai
,
H.
, and
MacBeth
,
C.
,
1995
, “
Automatic Picking of Seismic Arrivals in Local Earthquake Data Using an Artificial Neural Network
,”
Geophys. J. Int.
,
120
(
3
), pp.
758
774
.10.1111/j.1365-246X.1995.tb01851.x
178.
Pearson
,
M. R.
,
Eaton
,
M.
,
Featherston
,
C.
,
Pullin
,
R.
, and
Holford
,
K.
,
2017
, “
Improved Acoustic Emission Source Location During Fatigue and Impact Events in Metallic and Composite Structures
,”
Struct. Health Monit.
,
16
(
4
), pp.
382
399
.10.1177/1475921716672206
179.
Jones
,
M.
,
2023
, “
On Novel Machine Learning Approaches for Acoustic Emission Source Localisation: A Probabilistic Perspective
,”
Ph.D. thesis
,
University of Sheffield
, Sheffield, UK.uk.bl.ethos.878197
180.
Yamada
,
H.
,
Mizutani
,
Y.
,
Nishino
,
H.
,
Takemoto
,
M.
, and
Ono
,
K.
,
2000
, “
Lamb-Wave Source Location of Impact on Anisotropic Plates
,”
J. Acoust. Emiss.
, 18(1), pp.
51
60
.https://www.researchgate.net/publication/266270714_Lamb_wave_source_location_of_impact_on_anisotropic_plates
181.
Zhu
,
W.
, and
Beroza
,
G. C.
,
2018
, “
PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method
,”
Geophys. J. Int.
, 216(1), pp.
261
273
.10.1093/gji/ggy423
182.
Zonzini
,
F.
,
Bogomolov
,
D.
,
Dhamija
,
T.
,
Testoni
,
N.
,
De Marchi
,
L.
, and
Marzani
,
A.
,
2022
, “
Deep Learning Approaches for Robust Time of Arrival Estimation in Acoustic Emission Monitoring
,”
Sensors
,
22
(
3
), p.
1091
.10.3390/s22031091
183.
Brodnik
,
N. R.
,
Muir
,
C.
,
Tulshibagwale
,
N.
,
Rossin
,
J.
,
Echlin
,
M. P.
,
Hamel
,
C. M.
,
Kramer
,
S. L. B.
,
Pollock
,
T. M.
,
Kiser
,
J. D.
,
Smith
,
C.
, and
Daly
,
S. H.
,
2023
, “
Perspective: Machine Learning in Experimental Solid Mechanics
,”
J. Mech. Phys. Solids
,
173
, p.
105231
.10.1016/j.jmps.2023.105231
184.
Godin
,
N.
,
Reynaud
,
P.
, and
Fantozzi
,
G.
,
2019
, “
Contribution of ae analysis in Order to Evaluate Time to Failure of Ceramic Matrix Composites
,”
Eng. Fract. Mech.
,
210
, pp.
452
469
.10.1016/j.engfracmech.2018.03.006
185.
Koabaz
,
M.
,
Hajzargarbashi
,
T.
,
Kundu
,
T.
, and
Deschamps
,
M.
,
2012
, “
Locating the Acoustic Source in an Anisotropic Plate
,”
Struct. Health Monit.
,
11
(
3
), pp.
315
323
.10.1177/1475921711419991
186.
Ciampa
,
F.
, and
Meo
,
M.
,
2010
, “
A New Algorithm for Acoustic Emission Localization and Flexural Group Velocity Determination in Anisotropic Structures
,”
Compos. Part A: Appl. Sci. Manuf.
,
41
(
12
), pp.
1777
1786
.10.1016/j.compositesa.2010.08.013
187.
Park
,
W. H.
,
Packo
,
P.
, and
Kundu
,
T.
,
2017
, “
Acoustic Source Localization in an Anisotropic Plate Without Knowing Its Material properties—A New Approach
,”
Ultrasonics
,
79
, pp.
9
17
.10.1016/j.ultras.2017.02.021
188.
Sen
,
N.
, and
Kundu
,
T.
,
2018
, “
A New Wave Front Shape-Based Approach for Acoustic Source Localization in an Anisotropic Plate Without Knowing Its Material Properties
,”
Ultrasonics
,
87
, pp.
20
32
.10.1016/j.ultras.2018.01.011
189.
Kocur
,
G. K.
,
Saenger
,
E. H.
,
Grosse
,
C. U.
, and
Vogel
,
T.
,
2016
, “
Time Reverse Modeling of Acoustic Emissions in a Reinforced Concrete Beam
,”
Ultrasonics
,
65
, pp.
96
104
.10.1016/j.ultras.2015.10.014
190.
Maillet
,
E.
,
Baker
,
C.
,
Morscher
,
G. N.
,
Pujar
,
V. V.
, and
Lemanski
,
J. R.
,
2015
, “
Feasibility and Limitations of Damage Identification in Composite Materials Using Acoustic Emission
,”
Compos. Part A: Appl. Sci. Manuf.
,
75
, pp.
77
83
.10.1016/j.compositesa.2015.05.003
191.
Morscher
,
G. N.
,
2004
, “
Stress-Dependent Matrix Cracking in 2D Woven SiC-Fiber Reinforced Melt-Infiltrated SiC Matrix Composites
,”
Compos. Sci. Technol.
,
64
(
9
), pp.
1311
1319
.10.1016/j.compscitech.2003.10.022
192.
Godin
,
N.
,
Reynaud
,
P.
, and
Fantozzi
,
G.
,
2022
, “
AE in Ceramics and Ceramic Matrix Composites
,”
Acoustic Emission Testing: Basics for Research—Applications in Engineering
,
C. U.
Grosse
,
M.
Ohtsu
,
D. G.
Aggelis
, and
T.
Shiotani
, eds.,
Springer Nature Switzerland AG
, Switzerland, pp.
663
710
.10.1007/978-3-030-67936-1_22
193.
Maillet
,
E.
,
Godin
,
N.
,
R'Mili
,
M.
,
Reynaud
,
P.
,
Fantozzi
,
G.
, and
Lamon
,
J.
,
2014
, “
Real-Time Evaluation of Energy Attenuation: A Novel Approach to Acoustic Emission Analysis for Damage Monitoring of Ceramic Matrix Composites
,”
J. Eur. Ceram. Soc.
,
34
(
7
), pp.
1673
1679
.10.1016/j.jeurceramsoc.2013.12.041
194.
Baste
,
S.
,
El Guerjouma
,
R.
, and
Audoin
,
B.
,
1992
, “
Effect of Microcracking on the Macroscopic Behaviour of Ceramic Matrix Composites: Ultrasonic Evaluation of Anisotropic Damage
,”
Mech. Mater.
,
14
(
1
), pp.
15
31
.10.1016/0167-6636(92)90015-6
195.
Godin
,
N.
,
Reynaud
,
P.
, and
Fantozzi
,
G.
,
2018
, “
Challenges and Limitations in the Identification of Acoustic Emission Signature of Damage Mechanisms in Composites Materials
,”
Appl. Sci.
,
8
(
8
), p.
1267
.10.3390/app8081267
196.
Saeedifar
,
M.
, and
Zarouchas
,
D.
,
2020
, “
Damage Characterization of Laminated Composites Using Acoustic Emission: A Review
,”
Compos. Part B: Eng.
,
195
, p.
108039
.10.1016/j.compositesb.2020.108039
197.
Géron
,
A.
,
2019
,
Hands-On Machine Learning With Scikit-Learn, Keras, & TensorFlow: Concept, Tools and Techniques to Build Intelligent Systems
, 2nd ed.,
O'Reilly Media
, Sebastopol, CA.
198.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press, Cambridge, MA
.
199.
Moevus
,
M.
,
Godin
,
N.
,
R'Mili
,
M.
,
Rouby
,
D.
,
Reynaud
,
P.
,
Fantozzi
,
G.
, and
Farizy
,
G.
,
2008
, “
Analysis of Damage Mechanisms and Associated Acoustic Emission in Two SiCf/[Si-B-C] Composites Exhibiting Different Tensile Behaviours. Part II: Unsupervised Acoustic Emission Data Clustering
,”
Compos. Sci. Technol.
,
68
(
6
), pp.
1258
1265
.10.1016/j.compscitech.2007.12.002
200.
Schneider
,
S.
,
Baevski
,
A.
,
Collobert
,
R.
, and
Auli
,
M.
,
2019
, “
wav2vec: Unsupervised Pre-Training for Speech Recognition
,” arXiv:1904.05862.
201.
Deng
,
L.
,
2012
, “
The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]
,”
IEEE Signal Process. Mag.
,
29
(
6
), pp.
141
142
.10.1109/MSP.2012.2211477
202.
Wisner
,
B.
,
Mazur
,
K.
,
Perumal
,
V.
,
Baxevanakis
,
K. P.
,
An
,
L.
,
Feng
,
G.
, and
Kontsos
,
A.
,
2019
, “
Acoustic Emission Signal Processing Framework to Identify Fracture in Aluminum Alloys
,”
Eng. Fract. Mech.
,
210
, pp.
367
380
.10.1016/j.engfracmech.2018.04.027
203.
Ohtsu
,
M.
,
1995
, “
Acoustic Emission Theory for Moment Tensor Analysis
,”
Res. Nondestruct. Eval.
,
6
(
3
), pp.
169
184
.10.1080/09349849509409555
204.
Kundu
,
T.
,
Nakatani
,
H.
, and
Takeda
,
N.
,
2012
, “
Acoustic Source Localization in Anisotropic Plates
,”
Ultrasonics
,
52
(
6
), pp.
740
746
.10.1016/j.ultras.2012.01.017
205.
Foti
,
F.
,
Pannier
,
Y.
,
Balaciart
,
S. O.
,
Grandidier
,
J.-C.
,
Gigliotti
,
M.
, and
Guigon
,
C.
,
2021
, “
In-Situ Multi-Axial Testing of Three-Dimensional (3D) Woven Organic Matrix Composites for Aeroengine Applications
,”
Compos. Struct.
,
273
, p.
114259
.10.1016/j.compstruct.2021.114259
206.
Zhao
,
Z.
, and
Chen
,
N.-Z.
,
2022
, “
Acoustic Emission Based Damage Source Localization for Structural Digital Twin of Wind Turbine Blades
,”
Ocean Eng.
,
265
, p.
112552
.10.1016/j.oceaneng.2022.112552
You do not currently have access to this content.