Abstract

This paper contains a review of the theory and applications of nonlinear normal modes, which have been developed during last decade. This review has more than 200 references. It is a continuation of two previous review papers by the same authors. The following theoretical issues of nonlinear normal modes are treated: basic concepts and definitions; application of the normal form theory for nonlinear modes construction; nonlinear modes in finite degrees-of-freedom systems; resonances and bifurcations; reduced-order modeling; nonlinear modes in stochastic dynamical systems; numerical methods; identification of mechanical systems using nonlinear modes. The following applied issues of this theory are treated in this review: experimental measurement of nonlinear modes; nonlinear modes in continuous systems; engineering applications (aerospace engineering, power engineering, piecewise-linear systems and structures with dry friction); nonlinear modes in nanostructures and physical systems; targeted energy transfer and absorption problem.

References

1.
Mikhlin
,
Y. V.
, and
Avramov
,
K. V.
,
2010
, “
Nonlinear Normal Modes for Vibrating Mechanical Systems. Review of Theoretical Developments
,”
Appl. Mech. Rev.
,
63
(
6
), p.
060802
.10.1115/1.4003825
2.
Avramov
,
K. V.
, and
Mikhlin
,
Y. V.
,
2013
, “
Review of Applications of Nonlinear Normal Modes for Vibrating Mechanical Systems
,”
Appl. Mech. Rev
,
65
(
2
), p.
020801
.10.1115/1.4023533
3.
Lyapunov
,
A. M.
,
1947
,
The General Problem of the Stability of Motion
,
Princeton University
,
Princeton, NJ
.
4.
Mikhlin
,
Y. V.
,
1996
, “
Normal Vibrations of a General Class of Conservative Oscillators
,”
Nonlinear Dyn.
,
11
(
1
), pp.
1
15
.10.1007/BF00045048
5.
Weinstein
,
A.
,
1973
, “
Normal Modes for Nonlinear Hamiltonian Systems
,”
Inventiones Math.
,
20
(
1
), pp.
47
57
.10.1007/BF01405263
6.
Seifert
,
H.
,
1948
, “
Periodische Bewegungen Mechaischen Systeme
,”
Math. Z.
,
51
(
2
), pp.
197
216
.10.1007/BF01291002
7.
Ekeland
,
I.
, and
Lasry
,
J. M.
,
1980
, “
On the Number of Periodic Trajectories for a Hamiltonian Flow on a Convex Energy Surface
,”
Ann. Math.
,
112
(
2
), pp.
283
319
.10.2307/1971148
8.
Rabinowitz
,
P. H.
,
1982
, “
On Large Norm Periodic Solutions of Some Differential Equations
,”
Ergodic Theory and Dynamical Systems II. Progress
in
Mathematics
,
A.
Katok
, eds., Vol.
21
,
Birkhäuser
,
Boston, MA
, pp.
193
210
.
9.
Kauderer
,
H.
,
1958
,
Nichtlineare Mechanik
,
Springer-Verlag
,
Berlin, Germany
.
10.
Rosenberg
,
R. M.
, and
Atkinson
,
C. P.
,
1959
, “
On the Natural Modes and Their Stability in Nonlinear Two-Degree-of-Freedom Systems
,”
ASME J. Appl. Mech.
,
26
(
3
), pp.
377
385
.10.1115/1.4012049
11.
Rosenberg
,
R.
,
1960
, “
Normal Modes of Nonlinear Dual Mode Systems
,”
ASME J. Appl. Mech.
,
27
(
2
), pp.
263
268
.10.1115/1.3643948
12.
Rosenberg
,
R.
,
1962
, “
The Normal Modes of Nonlinear n-Degree-of-Freedom Systems
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
7
14
.10.1115/1.3636501
13.
Rosenberg
,
R.
,
1966
, “
Nonlinear Vibrations of Systems With Many Degrees of Freedom
,”
Adv. Appl. Mech.
,
9
, pp.
156
243
.
14.
Vakakis
,
A.
,
Manevitch
,
L.
,
Mikhlin
,
Y.
,
Pilipchuk
,
V.
, and
Zevin
,
A.
,
1996
,
Normal Modes and Localization in Nonlinear Systems
,
Wiley
,
New York
.
15.
Shaw
,
S.
, and
Pierre
,
C.
,
1991
, “
Nonlinear Normal Modes and Invariant Manifolds
,”
J. Sound Vib.
,
150
(
1
), pp.
170
173
.10.1016/0022-460X(91)90412-D
16.
Shaw
,
S.
, and
Pierre
,
C.
,
1993
, “
Normal Modes for Nonlinear Vibratory Systems
,”
J. Sound Vib.
,
164
(
1
), pp.
85
124
.10.1006/jsvi.1993.1198
17.
Jiang
,
D.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
2005
, “
The Construction of Non-Linear Normal Modes for Systems With Internal Resonances
,”
Int. J. Non-Linear Mech.
,
40
(
5
), pp.
729
746
.10.1016/j.ijnonlinmec.2004.08.010
18.
Shaw
,
S. W.
,
2014
, “
Invariant Manifold Representations of Nonlinear Modes of Vibration
,”
Modal Analysis of Nonlinear Mechanical Systems. CISM International Centre for Mechanical Sciences
, Vol.
555
,
G.
Kerschen
, eds.,
Springer
,
Vienna, Austria
, pp.
47
74
.
19.
Haller
,
G.
, and
Ponsioen
,
S.
,
2016
, “
Nonlinear Normal Modes and Spectral Sub-Manifolds: Existence, Uniqueness and Use in Model Reduction
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1493
1534
.10.1007/s11071-016-2974-z
20.
Mikhlin
,
Y. V.
, and
Morgunov
,
B. I.
,
2001
, “
Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems
,”
Nonlinear Dyn.
,
25
(
1/3
), pp.
33
48
.10.1023/A:1012942413955
21.
Klimenko
,
A. A.
,
Mikhlin
,
Y. V.
, and
Awrejcewicz
,
J.
,
2012
, “
Nonlinear Normal Modes in Pendulum Systems
,”
Nonlinear Dyn.
,
70
(
1
), pp.
797
813
.10.1007/s11071-012-0496-x
22.
Perepelkin
,
N. V.
,
Mikhlin
,
Y.
, and
Pierre
,
C.
,
2013
, “
Non-Linear Normal Forced Vibration Modes in Systems With Internal Resonance
,”
Int. J. Non-Linear Mech.
,
57
, pp.
102
115
.10.1016/j.ijnonlinmec.2013.06.002
23.
Avramov
,
K. V.
, and
Mikhlin
,
Y. V.
,
2006
, “
Snap – Through Truss as an Absorber of Forced Oscillations
,”
J. Sound Vib.
,
290
(
3–5
), pp.
705
722
.10.1016/j.jsv.2005.04.022
24.
Avramov
,
K. V.
,
2008
, “
Analysis of Forced Vibrations by Nonlinear Modes
,”
Nonlinear Dyn.
,
53
(
1–2
), pp.
117
127
.10.1007/s11071-007-9300-8
25.
Avramov
,
K.
,
2009
, “
Nonlinear Modes of Parametric Vibrations and Their Applications to Beams Dynamics
,”
J. Sound Vib.
,
322
(
3
), pp.
476
489
.10.1016/j.jsv.2008.07.013
26.
Mikhlin
,
Y. V.
,
Shmatko
,
T. V.
, and
Manucharyan
,
G. V.
,
2004
, “
Lyapunov Definition and Stability of Regular or Chaotic Vibration Modes in Systems With Several Equilibrium Positions
,”
Comput. Struct.
,
82
(
31–32
), pp.
2733
2742
.10.1016/j.compstruc.2004.03.082
27.
Perkins
,
E.
,
2019
, “
Restricted Normal Mode Analysis and Chaotic Response of p-Mode Intrinsic Localized Mode
,”
Nonlinear Dyn.
,
97
(
2
), pp.
955
966
.10.1007/s11071-019-05020-7
28.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J.-C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Sign. Process.
,
23
(
1
), pp.
170
194
.10.1016/j.ymssp.2008.04.002
29.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2009
, “
Nonlinear Normal Modes, Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Sign. Process.
,
23
(
1
), pp.
195
216
.10.1016/j.ymssp.2008.04.003
30.
Albu-Schäffer
,
A.
, and
Della Santina
,
C.
,
2020
, “
A Review on Nonlinear Modes in Conservative Mechanical Systems
,”
Annu. Rev. Control
,
50
, pp.
49
71
.10.1016/j.arcontrol.2020.10.002
31.
Kerschen
,
G.
, and
Vakakis
,
A. F.
,
2020
, “
Modal Analysis of Nonlinear Mechanical Systems
,”
Handbook of Experimental Structural Dynamics
,
R.
Allemang
,
P.
Avitabile
, eds.,
Springer
,
New York
.
32.
Montaldi
,
J.
,
Roberts
,
M.
, and
Stewart
,
I.
,
1990
, “
Existence of Nonlinear Normal Modes of Symmetric Hamiltonian Systems
,”
Nonlinearity
,
3
(
3
), pp.
695
730
.10.1088/0951-7715/3/3/009
33.
J’ez’equel
,
L.
, and
Lamarque
,
C. H.
,
1991
, “
Analysis of Non-Linear Dynamical Systems by the Normal Form Theory
,”
J. Sound Vib.
,
149
(
3
), pp.
429
459
.10.1016/0022-460X(91)90446-Q
34.
Touzé
,
C.
,
2014
, “
Normal Form Theory and Nonlinear Normal Modes: Theoretical Settings and Applications
,”
Modal Analysis of Nonlinear Mechanical Systems. CISM International Centre for Mechanical Sciences
, Vol.
555
,
G.
Kerschen
, eds.,
Springer
,
Vienna
,
75
160
.
35.
Touzé
,
C.
, and
Amabili
,
M.
,
2006
, “
Non-Linear Normal Modes for Damped Geometrically Non-Linear Systems: Application to Reduced-Order Modeling of Harmonically Forced Structures
,”
J. Sound Vib.
,
298
(
4–5
), pp.
958
981
.10.1016/j.jsv.2006.06.032
36.
Touzé
,
C.
,
Amabili
,
M.
, and
Thomas
,
O.
,
2008
, “
Reduced-Order Models for Large-Amplitude Vibrations of Shells Including In-Plane Inertia
,”
Comp. Met. Appl. Mech. Eng.
,
197
(
21–24
), pp.
2030
2045
.10.1016/j.cma.2008.01.002
37.
Neild
,
S. A.
,
Champneys
,
A. R.
,
Wagg
,
D. J.
,
Hill
,
T. L.
, and
Cammarano
,
A.
,
2015
, “
The Use of Normal Forms for Analysing Nonlinear Mechanical Vibrations
,”
Phil. Trans. R. Soc. A
,
373
(
2051
), p.
20140404
.10.1098/rsta.2014.0404
38.
Laxalde
,
D.
, and
Thouverez
,
F.
,
2009
, “
Complex Non-Linear Modal Analysis for Mechanical Systems: Application to Turbomachinery Bladings With Friction Interfaces
,”
J. Sound Vib.
,
322
(
4–5
), pp.
1009
1025
.10.1016/j.jsv.2008.11.044
39.
Warminski
,
J.
,
2010
, “
Nonlinear Normal Modes of a Self-Excited System Driven by Parametric and External Excitations
,”
Nonlinear Dyn.
,
61
(
4
), pp.
677
689
.10.1007/s11071-010-9679-5
40.
Hennig
,
D.
,
2015
, “
Existence of Nonlinear Normal Modes for Coupled Nonlinear Oscillators
,”
Nonlinear Dyn.
,
80
(
1–2
), pp.
937
944
.10.1007/s11071-015-1918-3
41.
Krack
,
M.
,
2015
, “
Nonlinear Modal Analysis of Nonconservative Systems: Extension of the Periodic Motion Concept
,”
Comput. Struct.
,
154
, pp.
59
71
.10.1016/j.compstruc.2015.03.008
42.
Cirillo
,
G. I.
,
Mauroy
,
A.
,
Renson
,
L.
,
Kerschen
,
G.
, and
Sepulchre
,
R.
,
2015
, “
Global Parametrization of the Invariant Manifold Defining Nonlinear Normal Modes Using the Koopman Operator
,”
ASME Paper No.
DETC2015-46366.
43.
Cirillo
,
G. I.
,
Mauroy
,
A.
,
Renson
,
L.
,
Kerschen
,
G.
, and
Sepulchre
,
R.
,
2016
, “
A Spectral Characterization of Nonlinear Normal Modes
,”
J. Sound Vib.
,
377
, pp.
284
301
.10.1016/j.jsv.2016.05.016
44.
Hill
,
T. L.
,
Cammarano
,
A.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2015
, “
Interpreting the Forced Responses of a Two-Degree-of-Freedom Nonlinear Oscillator Using Backbone Curves
,”
J. Sound Vib.
,
349
, pp.
276
288
.10.1016/j.jsv.2015.03.030
45.
Hill
,
T. L.
,
Neild
,
S. A.
, and
Cammarano
,
A.
,
2016
, “
An Analytical Approach for Detecting Isolated Periodic Solution Branches in Weakly Nonlinear Structures
,”
J. Sound Vib.
,
379
, pp.
150
165
.10.1016/j.jsv.2016.05.030
46.
Cenedese
,
M.
, and
Haller
,
G.
,
2020
, “
How Do Conservative Backbone Curves Perturb Into Forced Responses? A Melnikov Function Analysis
,”
Proc. R. Soc. A
,
476
(
2234
), p.
20190494
.10.1098/rspa.2019.0494
47.
Hill
,
T. L.
,
Cammarano
,
A.
,
Neild
,
S. A.
, and
Barton
,
D. A. W.
,
2017
, “
Identifying the Significance of Nonlinear Normal Modes
,”
Proc. R. Soc. A
,
473
(
2199
), p.
20160789
.10.1098/rspa.2016.0789
48.
Butcher
,
E. A.
, and
Lovell
,
T. A.
,
2018
, “
Nonlinear Normal Modes of Relative Orbital Motions for Unperturbed Two-Body Reference Orbits
,”
Acta Astronaut.
,
153
, pp.
191
200
.10.1016/j.actaastro.2018.01.007
49.
Papangelo
,
A.
,
Fontanela
,
F.
,
Grolet
,
A.
,
Ciavarella
,
M.
, and
Hoffmann
,
N.
,
2019
, “
Multistability and Localization in Forced Cyclic Symmetric Structures Modelled by Weakly-Coupled Duffing Oscillators
,”
J. Sound Vib.
,
440
, pp.
202
211
.10.1016/j.jsv.2018.10.028
50.
Breunung
,
T.
, and
Haller
,
G.
,
2018
, “
Explicit Backbone Curves From Spectral Submanifolds of Forced Damped Nonlinear Mechanical Systems
,”
Proc. R. Soc. A
,
474
(
2213
), p.
20180083
.10.1098/rspa.2018.0083
51.
Ponsioen
,
S.
,
Pedergnana
,
T.
, and
Haller
,
G.
,
2019
, “
Analytic Prediction of Isolated Forced Response Curves From Spectral Submanifolds
,”
Nonlinear Dyn.
,
98
(
4
), pp.
2755
2773
.10.1007/s11071-019-05023-4
52.
Ferhatoglu
,
E.
,
Cigeroglu
,
E.
, and
Özgüven
,
H. N.
,
2020
, “
A Novel Modal Superposition Method With Response Dependent Nonlinear Modes for Periodic Vibration Analysis of Large MDOF Nonlinear Systems
,”
Mech. Syst. Signal Proces.
,
135
, p.
106388
.10.1016/j.ymssp.2019.106388
53.
Petromichelakis
,
I.
, and
Kougioumtzoglou
,
I. A.
,
2021
, “
A Computational Algebraic Geometry Technique for Determining Nonlinear Normal Modes of Structural Systems
,”
Int. J. Non-Linear Mech.
,
135
, p.
103757
.10.1016/j.ijnonlinmec.2021.103757
54.
Sun
,
Y.
,
Vizzaccaro
,
A.
,
Yuan
,
J.
, and
Salles
,
L.
,
2021
, “
An Extended Energy Balance Method for Resonance Prediction in Forced Response of Systems With Non-Conservative Nonlinearities Using Damped Nonlinear Normal Mode
,”
Nonlinear Dyn.
,
103
(
4
), pp.
3315
3333
.10.1007/s11071-020-05793-2
55.
Krack
,
M.
,
2021
, “
Extension of the Single-Nonlinear-Mode Theory by Linear Attachments and Application to Exciter-Structure Interaction
,”
J. Sound Vib.
,
505
, p.
116120
.10.1016/j.jsv.2021.116120
56.
Mikhlin
,
Y. V.
, and
Goloskubova
,
N. S.
,
2021
, “
Stability of Steady States With Complex Behavior in Time
,”
Perspectives in Dynamical Systems III: Control and Stability, DSTA 2019, Springer Proceedings in Mathematics & Statistics
, Vol.
364
.
J.
Awrejcewicz
, ed.,
Springer
,
Cham, Switzerland, pp. 309–326
.10.1007/978-3-030-77314-4_24
57.
Surganova
,
Y. E.
, and
Mikhlin
,
Y. V.
,
2022
, “
Localized and Non-Localized Nonlinear Normal Modes in a System of Two Coupled Pendulums Under a Magnetic Field
,”
Int. J. Non-Linear Mech.
,
147
, p.
104182
.10.1016/j.ijnonlinmec.2022.104182
58.
Manevitch
,
L. I.
, and
Vakakis
,
A. F.
,
2014
, “
Nonlinear Oscillatory Acoustic Vacuum
,”
SIAM J. Appl. Math.
,
74
(
6
), pp.
1742
1762
.10.1137/140957949
59.
Zhang
,
Z.
,
Koroleva
,
I.
,
Manevitch
,
L. I.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2016
, “
Nonreciprocal Acoustics and Dynamics in the in-Plane Oscillations of a Geometrically Nonlinear Lattice
,”
Phys. Rev. E
,
94
(
3
), p.
032214
.10.1103/PhysRevE.94.032214
60.
Hill
,
T. L.
,
Neild
,
S. A.
,
Cammarano
,
A.
, and
Wagg
,
D. J.
,
2016
, “
The Influence of Phase-Locking on Internal Resonance From a Nonlinear Normal Mode Perspective
,”
J. Sound Vib.
,
379
, pp.
135
149
.10.1016/j.jsv.2016.05.028
61.
Kuether
,
R. J.
,
Renson
,
L.
,
Detroux
,
T.
,
Grappasonni
,
C.
,
Kerschen
,
G.
, and
Allen
,
M. S.
,
2015
, “
Nonlinear Normal Modes, Modal Interactions and Isolated Resonance Curves
,”
J. Sound Vib.
,
351
, pp.
299
310
.10.1016/j.jsv.2015.04.035
62.
Liu
,
X.
,
Cammarano
,
A.
,
Wagg
,
D. J.
,
Neild
,
S. A.
, and
Barthorpe
,
R. J.
,
2016
, “
N− 1 Modal Interactions of a Three-Degree-of-Freedom System With Cubic Elastic Nonlinearities
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
497
511
.10.1007/s11071-015-2343-3
63.
Plaksiy
,
K. Y.
, and
Mikhlin
,
Y. V.
,
2015
, “
Dynamics of Nonlinear Dissipative Systems in the Vicinity of Resonance
,”
J. Sound Vib.
,
334
, pp.
319
337
.10.1016/j.jsv.2014.09.001
64.
Plaksiy
,
K. Y.
, and
Mikhlin
,
Y. V.
,
2015
, “
Resonance Behavior of the Limited Power-Supply System Coupled With the Nonlinear Absorber
,”
Math. Eng., Sci. Aerosp.
,
6
(
3
), pp.
475
495
.
65.
Plaksiy
,
K. Y.
, and
Mikhlin
,
Y. V.
,
2017
, “
Interaction of Free and Forced Nonlinear Normal Modes in two-DOF Dissipative Systems Under Resonance Conditions
,”
Int. J. Non-Linear Mech.
,
94
(
3
), pp.
281
291
.10.1016/j.ijnonlinmec.2017.01.014
66.
Rega
,
G.
, and
Guo
,
T.
,
2022
, “
Nonlinear Mode Localization in Boundary-Interior Coupled Structures by an Asymptotic Approach
,”
Int. J. Non-Linear Mech.
,
141
, p.
103929
.10.1016/j.ijnonlinmec.2022.103929
67.
Givois
,
A.
,
Tan
,
J.-J.
,
Touzé
,
C.
, and
Thomas
,
O.
,
2020
, “
Backbone Curves of Coupled Cubic Oscillators in One-to-One Internal Resonance: Bifurcation Scenario, Measurements and Parameter Identification
,”
Meccanica
,
55
(
3
), pp.
481
503
.10.1007/s11012-020-01132-2
68.
Touzé
,
C.
,
Vizzaccaro
,
A.
, and
Thomas
,
O.
,
2021
, “
Model Order Reduction Methods for Geometrically Nonlinear Structures: A Review of Nonlinear Techniques
,”
Nonlin. Dyn.
,
105
(
2
), pp.
1141
1190
.10.1007/s11071-021-06693-9
69.
Mazzilli
,
C. E.
,
Gonçalves
,
P. B.
, and
Franzini
,
G. R.
,
2022
, “
Reduced-Order Modelling Based on Non-Linear Modes
,”
Int. J. Mech. Sci.
,
214
, p.
106915
.10.1016/j.ijmecsci.2021.106915
70.
Pesheck
,
E.
,
2000
, “
Reduced-Order Modeling of Nonlinear Structural Systems Using Nonlinear Normal Modes and Invariant Manifolds
,”
Ph.D. thesis
,
University of Michigan
, Ann Arbor,
MI
.https://theses.hal.science/tel-00361026/document
71.
Mazzilli
,
C. E. N.
,
Soares
,
M. E. S.
, and
Baracho Neto
,
O. G. P.
,
2001
, “
Reduction of Finite-Element Models of Planar Frames Using Non-Linear Normal Modes
,”
Int. J. Solids Struct.
,
38
(
10–13
), pp.
1993
2008
.10.1016/S0020-7683(00)00148-7
72.
Touzé
,
C.
,
Vidrascu
,
M.
, and
Chapelle
,
D.
,
2014
, “
Direct Finite Element Computation of Non-Linear Modal Coupling Coefficients for Reduced-Order Shell Models
,”
Comput. Mech.
,
54
(
2
), pp.
567
580
.10.1007/s00466-014-1006-4
73.
Vizzaccaro
,
A.
,
Salles
,
L.
, and
Touzé
,
C.
,
2021
, “
Comparison of Nonlinear Mappings for Reduced-Order Modelling of Vibrating Structures: Normal Form Theory and Quadratic Manifold Method With Modal Derivatives (MDs)
,”
Nonlinear Dyn.
,
103
(
4
), pp.
3335
3370
.10.1007/s11071-020-05813-1
74.
Vizzaccaro
,
A.
,
Shen
,
Y.
,
Salles
,
L.
,
Blahos
,
J.
, and
Touzé
,
C.
,
2021
, “
Direct Computation of Nonlinear Mapping Via Normal Form for Reduced-Order Models of Finite Element Nonlinear Structures
,”
Comp. Meth. Appl. Mech. Eng.
,
384
, p.
113957
.10.1016/j.cma.2021.113957
75.
Opreni
,
A.
,
Vizzaccaro
,
A.
,
Frangi
,
A.
, and
Touzé
,
C.
,
2021
, “
Model Order Reduction Based on Direct Normal Form: Application to Large Finite Element MEMS Structures Featuring Internal Resonance
,”
Nonlinear Dyn.
,
105
(
2
), pp.
1237
1272
.10.1007/s11071-021-06641-7
76.
Shen
,
Y.
,
Béreux
,
N.
,
Frangi
,
A.
, and
Touzé
,
C.
,
2021
, “
Reduced Order Models for Geometrically Nonlinear Structures: Assessment of Implicit Condensation in Comparison With Invariant Manifold Approach
,”
Eur. J Mech-A/Solids
,
86
, p.
104165
.10.1016/j.euromechsol.2020.104165
77.
Vizzaccaro
,
A.
,
Opreni
,
A.
,
Salles
,
L.
,
Frangi
,
A.
, and
Touzé
,
C.
,
2022
, “
High Order Direct Parametrisation of Invariant Manifolds for Model Order Reduction of Finite Element Structures: Application to Large Amplitude Vibrations and Uncovering of a Folding Point
,”
Nonlinear Dyn.
,
110
(
1
), pp.
525
571
.10.1007/s11071-022-07651-9
78.
Opreni
,
A.
,
Vizzaccaro
,
A.
,
Touzé
,
C.
, and
Frangi
,
A.
,
2023
, “
High Order Direct Parametrisation of Invariant Manifolds for Model Order Reduction of Finite Element Structures: Application to Generic Forcing Terms and Parametrically Excited Systems
,”
Nonlinear Dyn.
,
111
(
6
), pp.
5401
5447
.10.1007/s11071-022-07978-3
79.
Martin
,
A.
,
Opreni
,
A.
,
Vizzaccaro
,
A.
,
Debeurre
,
M.
,
Salles
,
L.
,
Frangi
,
A.
,
Thomas
,
O.
, and
Touzé
,
C.
,
2023
, “
Reduced Order Modeling of Geometrically Nonlinear Rotating Structures Using the Direct Parametrisation of Invariant Manifolds
,”
J. Theor. Comput. App. Mech.
, p.
10430
.10.46298/jtcam.10430
80.
Kuether
,
R. J.
,
Brake
,
M. R.
, and
Allen
,
M. S.
,
2014
, “
Evaluating Convergence of Reduced Order Models Using Nonlinear Normal Modes
,”
Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series
,
H.
Atamturktur
,
B.
Moaveni
,
C.
Papadimitriou
,
T.
Schoenherr
, eds.,
Springer
,
Cham, Switzerland
, pp.
287
300
.https://engrsd.wiscweb.wisc.edu/wpcontent/uploads/sites/709/2014/10/Kuether_Brake_Allen-Evaluating-Convergence-using-NNMs_IMAC2014.pdf
81.
Kuether
,
R. J.
,
Deaner
,
B. J.
,
Hollkamp
,
J. J.
, and
Allen
,
M. S.
,
2015
, “
Evaluation of Geometrically Nonlinear Reduced-Order Models With Nonlinear Normal Modes
,”
AIAA J.
,
53
(
11
), pp.
3273
3285
.10.2514/1.J053838
82.
Kuether
,
R. J.
,
Allen
,
M. S.
, and
Hollkamp
,
J. J.
,
2017
, “
Modal Substructuring of Geometrically Nonlinear Finite Element Models With Interface Reduction
,”
AIAA J.
,
55
(
5
), pp.
1695
1706
.10.2514/1.J055215
83.
Craig
,
R.
, and
Bampton
,
M.
,
1968
, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
84.
Joannin
,
C.
,
Chouvion
,
B.
,
Thouverez
,
F.
,
Ousty
,
J.-P.
, and
Mbaye
,
M.
,
2017
, “
A Nonlinear Component Mode Synthesis Method for the Computation of Steady-State Vibrations in Non-Conservative Systems
,”
Mech. Syst. Sign. Process.
,
83
, pp.
75
92
.10.1016/j.ymssp.2016.05.044
85.
Joannin
,
C.
,
Thouverez
,
F.
, and
Chouvion
,
B.
,
2018
, “
Reduced-Order Modelling Using Nonlinear Modes and Triple Nonlinear Modal Synthesis
,”
Comput. Struct.
,
203
, pp.
18
33
.10.1016/j.compstruc.2018.05.005
86.
Haller
,
G.
, and
Ponsioen
,
S.
,
2017
, “
Exact Model Reduction by a Slow–Fast Decomposition of Nonlinear Mechanical Systems
,”
Nonlinear Dyn.
,
90
(
1
), pp.
617
647
.10.1007/s11071-017-3685-9
87.
Jain
,
S.
,
Tiso
,
P.
, and
Haller
,
G.
,
2018
, “
Exact Nonlinear Model Reduction for a Von Kármán Beam: Slow-Fast Decomposition and Spectral Submanifolds
,”
J. Sound Vib.
,
423
(
2
), pp.
195
211
.10.1016/j.jsv.2018.01.049
88.
Ponsioen
,
S.
,
Jain
,
S.
, and
Haller
,
G.
,
2020
, “
Model Reduction to Spectral Submanifolds and Forced Response Calculation in High-Dimensional Mechanical Systems
,”
J. Sound Vib.
,
488
(
2
), p.
115640
.10.1016/j.jsv.2020.115640
89.
Veraszto
,
Z.
,
Ponsioen
,
S.
, and
Haller
,
G.
,
2020
, “
Explicit Third-Order Model Reduction Formulas for General Nonlinear Mechanical Systems
,”
J. Sound Vib.
,
468
, p.
115039
.10.1016/j.jsv.2019.115039
90.
Li
,
M.
,
Jain
,
S.
, and
Haller
,
G.
,
2022
, “
Nonlinear Analysis of Forced Mechanical Systems With Internal Resonance Using Spectral Submanifolds, Part I: Periodic Response and Forced Response Curve
,”
Nonlin. Dyn.
,
110
(
2
), pp.
1005
1043.
10.1007/s11071-022-07714-x
91.
Li
,
M.
, and
Haller
,
G.
,
2022
, “
Nonlinear Analysis of Forced Mechanical Systems With Internal Resonance Using Spectral Submanifolds, Part II: Bifurcation and Quasi-Periodic Response
,”
Nonlinear Dyn
,
110
(
2
), pp.
1045
1080
.10.1007/s11071-022-07476-6
92.
Jain
,
S.
,
Tiso
,
P.
,
Rixen
,
D. J.
, and
Rutzmoser
,
J. B.
,
2017
, “
A Quadratic Manifold for Model Order Reduction of Nonlinear Structural Dynamics
,”
Comput. Struct.
,
188
, pp.
80
94
.10.1016/j.compstruc.2017.04.005
93.
Rutzmoser
,
J. B.
,
Rixen
,
D. J.
,
Tiso
,
P.
, and
Jain
,
S.
,
2017
, “
Generalization of Quadratic Manifolds for Reduced Order Modeling of Nonlinear Structural Dynamics
,”
Comput. Struct.
,
192
, pp.
196
209
.10.1016/j.compstruc.2017.06.003
94.
Yuan
,
J.
,
Sun
,
Y.
,
Schwingshackl
,
C.
, and
Salles
,
L.
,
2022
, “
Computation of Damped Nonlinear Normal Modes for Large Scale Nonlinear Systems in a Self-Adaptive Modal Subspace
,”
Mech. Syst. Sign. Process.
,
162
, p.
108082
.10.1016/j.ymssp.2021.108082
95.
Schoneman
,
J. D.
, and
Allen
,
M. S.
,
2016
, “
Investigating Nonlinear Modal Energy Transfer in a Random Load Environment
,”
Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series
,
G.
Kerschen
, ed.,
Springer
,
Cham, Switzerland
, pp.
141
153
.10.1007/978-3-319-29739-2_14
96.
Schoneman
,
J. D.
,
Allen
,
M. S.
, and
Kuether
,
R. J.
,
2017
, “
Relationships Between Nonlinear Normal Modes and Response to Random Inputs
,”
Mech. Syst. Sign. Process.
,
84
, pp.
184
199
.10.1016/j.ymssp.2016.07.010
97.
Mikhlin
,
Y. V.
, and
Rudnyeva
,
G. V.
,
2021
, “
Stability of Nonlinear Normal Modes Under Stochastic Excitation
,”
Nonlinear Dyn
,
103
(
4
), pp.
3407
3415
.10.1007/s11071-020-06093-5
98.
Cilenti
,
L.
, and
Balachandran
,
B.
,
2021
, “
Transient Probability in Basins of Noise Influenced Responses of Mono and Coupled Duffing Oscillators
,”
Chaos
,
31
(
6
), p.
063117
.10.1063/5.0051103
99.
Breunung
,
T.
,
Kogelbauer
,
F.
, and
Haller
,
G.
,
2022
, “
The Deterministic Core of Stochastically Perturbed Nonlinear Mechanical Systems
,”
Proc. R. Soc. A
,
478
(
2262)
, p.
20210933
.10.1098/rspa.2021.0933
100.
Renson
,
L.
,
Kerschen
,
G.
, and
Cochelin
,
B.
,
2016
, “
Numerical Computation of Nonlinear Normal Modes in Mechanical Engineering
,”
J. Sound Vib.
,
364
, pp.
177
206
.10.1016/j.jsv.2015.09.033
101.
Kerschen
,
G.
,
2014
, “
Computation of Nonlinear Normal Modes Through Shooting and Pseudo-Arclength Computation
,”
Modal Analysis of Nonlinear Mechanical Systems. CISM International Centre for Mechanical Sciences
, Vol.
555
,
G.
Kerschen
, ed.,
Springer
,
Vienna
, Austria, pp.
215
250
.
102.
Blanc
,
F.
,
Touzé
,
C.
,
Mercier
,
J.-F.
,
Ege
,
K.
, and
Bonnet-Ben-Dhia
,
A.-S.
,
2013
, “
On the Numerical Computation of Nonlinear Normal Modes for Reduced-Order Modelling of Conservative Vibratory Systems
,”
Mech. Syst. Sign. Process.
,
36
(
2
), pp.
520
539
.10.1016/j.ymssp.2012.10.016
103.
Renson
,
L.
,
Deliége
,
G.
, and
Kerschen
,
G.
,
2014
, “
An Effective Finite-Element-Based Method for the Computation of Nonlinear Normal Modes of Nonconservative Systems
,”
Meccanica
,
49
(
8
), pp.
1901
1916
.10.1007/s11012-014-9875-3
104.
Cochelin
,
B.
,
2014
, “
Numerical Computation of Nonlinear Normal Modes Using HBM and ANM
,”
Modal Analysis of Nonlinear Mechanical Systems. CISM International Centre for Mechanical Sciences
, Vol.
555
,
G.
Kerschen
, ed.,
Springer
,
Vienna
, Austria, pp.
251
292
.
105.
Kuether
,
R. J.
, and
Allen
,
M. S.
,
2014
, “
A Numerical Approach to Directly Compute Nonlinear Normal Modes of Geometrically Nonlinear Finite Element Models
,”
Mech. Syst. Sign Process.
,
46
(
1
), pp.
1
15
.10.1016/j.ymssp.2013.12.010
106.
Krack
,
M.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2014
, “
On the Computation of the Slow Dynamics of Nonlinear Modes of Mechanical Systems
,”
Mech. Syst. Sign Process.
,
42
(
1–2
), pp.
71
87
.10.1016/j.ymssp.2013.08.031
107.
Manevitch
,
L. I.
,
2001
, “
The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators: Using of Complex Variables
,”
Nonlinear Dyn.
,
25
(
1/3
), pp.
95
109
.10.1023/A:1012994430793
108.
Uspensky
,
B.
, and
Avramov
,
K.
,
2014
, “
On Nonlinear Normal Modes of Piecewise Linear Systems Free Vibrations
,”
J. Sound Vib.
,
333
(
14
), pp.
3252
3265
.10.1016/j.jsv.2014.02.039
109.
Uspensky
,
B.
, and
Avramov
,
K.
,
2014
, “
Nonlinear Modes of Essential Nonlinear Piecewise Linear Systems Under the Action of Periodic Excitation
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1151
1156
.10.1007/s11071-013-1198-8
110.
Avramov
,
K. V.
,
2016
, “
Bifurcation Behavior of Steady Vibrations of Cantilever Plates With Geometrical Nonlinearities Interacting With Three-Dimensional Inviscid Potential Flow
,”
J. Vib. Control
,
22
(
5
), pp.
1198
1216
.10.1177/1077546314534716
111.
Avramov
,
K.
, and
Raimberdiyev
,
T.
,
2017
, “
Bifurcations Behavior of Bending Vibrations of Beams With Two Breathing Cracks
,”
Eng. Fract. Mech.
,
178
, pp.
22
38
.10.1016/j.engfracmech.2017.04.006
112.
Wang
,
F.
,
2015
, “
Bifurcations of Nonlinear Normal Modes Via the Configuration Domain and the Time Domain Shooting Methods
,”
Commun. Nonlinear Sci. Numer. Simul.
,
20
(
2
), pp.
614
628
.10.1016/j.cnsns.2014.06.008
113.
Haro
,
А.
,
Canadell
,
M.
,
Figueras
,
J.-L.
,
Luque
,
A.
, and
Mondelo
,
J.-M.
,
2016
,
The Parameterization Method for Invariant Manifolds
,
Springer
,
Cham, Switzerland
.
114.
Ponsioen
,
S.
,
Pedergnana
,
T.
, and
Haller
,
G.
,
2018
, “
Automated Computation of Autonomous Spectral Submanifolds for Nonlinear Modal Analysis
,”
J. Sound Vib.
,
420
, pp.
269
295
.10.1016/j.jsv.2018.01.048
115.
Jain
,
S.
, and
Haller
,
G.
,
2022
, “
How to Compute Invariant Manifolds and Their Reduced Dynamics in High-Dimensional Finite Element Models
,”
Nonlinear Dyn.
,
107
(
2
), pp.
1417
1450
.10.1007/s11071-021-06957-4
116.
Li
,
M.
,
Jain
,
S.
, and
Haller
,
G.
,
2023
, “
Model Reduction for Constrained Mechanical Systems Via Spectral Submanifolds
,”
Nonlinear Dyn.
,
111
(
10
), pp.
8881
8911
.10.1007/s11071-023-08300-5
117.
Sombroek
,
C. S. M.
,
Tiso
,
P.
,
Renson
,
L.
, and
Kerschen
,
G.
,
2018
, “
Numerical Computation of Nonlinear Normal Modes in a Modal Derivative Subspace
,”
Comput. Struct.
,
195
, pp.
34
46
.10.1016/j.compstruc.2017.08.016
118.
Meyrand
,
L.
,
Sarrouy
,
E.
,
Cochelin
,
B.
, and
Ricciardi
,
G.
,
2019
, “
Nonlinear Normal Mode Continuation Through a Proper Generalized Decomposition Approach With Modal Enrichment
,”
J. Sound Vib.
,
443
, pp.
444
459
.10.1016/j.jsv.2018.11.030
119.
Volvert
,
M.
, and
Kerschen
,
G.
,
2021
, “
Phase Resonance Nonlinear Modes of Mechanical Systems
,”
J. Sound Vib.
,
511
, p.
116355
.10.1016/j.jsv.2021.116355
120.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A. F.
, and
Golinval
,
J. C.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Sign. Process.
,
20
(
3
), pp.
505
592
.10.1016/j.ymssp.2005.04.008
121.
Noël
,
J.-P.
, and
Kerschen
,
G.
,
2017
, “
Nonlinear System Identification in Structural Dynamics: 10 More Years of Progress
,”
Mech. Syst. Sign. Process.
,
83
, pp.
2
35
.10.1016/j.ymssp.2016.07.020
122.
Pai
,
P. F.
,
2011
, “
Time-Frequency Characterization of Nonlinear Normal Modes and Challenges in Nonlinearity Identification of Dynamical Systems
,”
Mech. Syst. Sign. Process.
,
25
(
7
), pp.
2358
2374
.10.1016/j.ymssp.2011.02.013
123.
Zapico-Valle
,
J. L.
,
García-Diéguez
,
M.
, and
Alonso-Camblor
,
R.
,
2013
, “
Nonlinear Modal Identification of a Steel Frame
,”
Eng. Struct
,
56
, pp.
246
259
.10.1016/j.engstruct.2013.04.026
124.
Londono
,
J. M.
,
Neild
,
S. A.
, and
Cooper
,
J. E.
,
2015
, “
Identification of Backbone Curves of Nonlinear Systems From Resonance Decay Responses
,”
J. Sound Vib.
,
348
, pp.
224
238
.10.1016/j.jsv.2015.03.015
125.
Renson
,
L.
,
Gonzalez-Buelga
,
A.
,
Barton
,
D. A. W.
, and
Neild
,
S. A.
,
2016
, “
Robust Identification of Backbone Curves Using Control-Based Continuation
,”
J. Sound Vib.
,
367
, pp.
145
158
.10.1016/j.jsv.2015.12.035
126.
Noël
,
J. P.
, and
Kerschen
,
G.
,
2013
, “
Frequency-Domain Subspace Identification for Nonlinear Mechanical Systems
,”
Mech. Syst. Sign. Process.
,
40
(
2
), pp.
701
717
.10.1016/j.ymssp.2013.06.034
127.
Noël
,
J.-P.
,
Renson
,
L.
,
Grappasonni
,
C.
, and
Kerschen
,
G.
,
2016
, “
Identification of Nonlinear Normal Modes of Engineering Structures Under Broadband Forcing
,”
Mech. Syst. Sign. Process.
,
74
, pp.
95
110
.10.1016/j.ymssp.2015.04.016
128.
Peter
,
S.
,
Grundler
,
A.
,
Reuss
,
P.
,
Gaul
,
L.
, and
Leine
,
R. I.
,
2016
, “
Towards Finite Element Model Updating Based on Nonlinear Normal Modes
,”
Conference Proceedings of the Society for Experimental Mechanics Series
, Nonlinear Dyn., Vol.
1
,
G.
Kerschen
, ed.,
Springer
,
Cham
, Switzerland, pp.
209
217
.10.1007/978-3-319-15221-9_20
129.
Szalai
,
R.
,
Ehrhardt
,
D.
, and
Haller
,
G.
,
2017
, “
Nonlinear Model Identification and Spectral Submanifolds for Multi-Degree-of-Freedom Mechanical Vibrations
,”
Proc. R. Soc. A
,
473
(
2202
), p.
20160759
.10.1098/rspa.2016.0759
130.
Cenedese
,
M.
,
Axås
,
J.
,
Yang
,
H.
,
Eriten
,
M.
, and
Haller
,
G.
,
2022
, “
Data-Driven Nonlinear Model Reduction to Spectral Submanifolds in Mechanical Systems
,”
Phil. Trans. R. Soc. A
,
380
(
2229
), p.
20210194
.10.1098/rsta.2021.0194
131.
Cenedese
,
M.
,
Axås
,
J.
,
Bäuerlein
,
B.
,
Avila
,
K.
, and
Haller
,
G.
,
2022
, “
Data-Driven Modeling and Prediction of Non-Linearizable Dynamics Via Spectral Submanifolds
,”
Nat. Commun.
,
13
(
1
), p.
872
.10.1038/s41467-022-28518-y
132.
Axås
,
J.
,
Cenedese
,
M.
, and
Haller
,
G.
,
2023
, “
Fast Data-Driven Model Reduction for Nonlinear Dynamical Systems
,”
Nonlinear Dyn.
,
111
(
9
), pp.
7941
7957
.10.1007/s11071-022-08014-0
133.
Worden
,
K.
, and
Green
,
P. L.
,
2017
, “
A Machine Learning Approach to Nonlinear Modal Analysis
,”
Mech. Syst. Sign. Process.
,
84
(
Part B
), pp.
34
53
.10.1016/j.ymssp.2016.04.029
134.
Dervilis
,
N.
,
Simpson
,
T. E.
,
Wagg
,
D. J.
, and
Worden
,
K.
,
2019
, “
Nonlinear Modal Analysis Via Non-Parametric Machine Learning Tools
,”
Strain
,
55
(
1
), p.
12297
.10.1111/str.12297
135.
Champneys
,
M. D.
,
Tsialiamanis
,
G.
,
Rogers
,
T. J.
,
Dervilis
,
N.
, and
Worden
,
K.
,
2022
, “
On the Dynamic Properties of Statistically-Independent Nonlinear Normal Modes
,”
Mech. Syst. Sign. Process.
,
181
, p.
109510
.10.1016/j.ymssp.2022.109510
136.
Renson
,
L.
,
Ehrhardt
,
D. A.
,
Barton
,
D. A. W.
,
Neild
,
S. A.
, and
Cooper
,
J. E.
,
2016
, “
Connecting Nonlinear Normal Modes to the Forced Response of a Geometric Nonlinear Structure With Closely Spaced Modes
,”
Proceedings of ISMA, International Conference on Noise and Vibration Engineering/USD2016, International Conference on Uncertainty in Structural Dynamics, KU Leuven - Departement Werktuigkunde
, Sept. 19–21,
Heverlee, Belgium
, pp.
2775
2784
.https://researchinformation.bris.ac.uk/en/publications/connecting-nonlinear-normal-modes-to-the-forcedresponse-of-a-geo
137.
Renson
,
L.
,
Hill
,
T. L.
,
Ehrhardt
,
D. A.
,
Barton
,
D. A. W.
, and
Neild
,
S. A.
,
2018
, “
Force Appropriation of Nonlinear Structures
,”
Proc. R. Soc. A
,
474
(
2214
), p.
20170880
.10.1098/rspa.2017.0880
138.
Denis
,
V.
,
Jossic
,
M.
,
Giraud-Audine
,
C.
,
Chomette
,
B.
,
Renault
,
A.
, and
Thomas
,
O.
,
2018
, “
Identification of Nonlinear Modes Using Phase-Locked-Loop Experimental Continuation and Normal Form
,”
Mech. Syst. Sign. Process.
,
106
, pp.
430
452
.10.1016/j.ymssp.2018.01.014
139.
Song
,
M.
,
Renson
,
L.
,
Noël
,
J. P.
,
Moaveni
,
B.
, and
Kerschen
,
G.
,
2018
, “
Bayesian Model Updating of Nonlinear Systems Using Nonlinear Normal Modes
,”
Struct. Control Health Monit.
,
25
(
12
), p.
e2258
.10.1002/stc.2258
140.
Song
,
M.
,
Renson
,
L.
,
Moaveni
,
B.
, and
Kerschen
,
G.
,
2022
, “
Bayesian Model Updating and Class Selection of a Wing-Engine Structure With Nonlinear Connections Using Nonlinear Normal Modes
,”
Mech. Syst. Sign. Process.
,
165
, p.
108337
.10.1016/j.ymssp.2021.108337
141.
Scheel
,
M.
,
Kleyman
,
G.
,
Tatar
,
A.
,
Brake
,
M. R.
,
Peter
,
S.
,
Noël
,
J.-P.
,
Allen
,
M. S.
, and
Krack
,
M.
,
2020
, “
Experimental Assessment of Polynomial Nonlinear State-Space and Nonlinear-Mode Models for Near-Resonant Vibrations
,”
Mech. Syst. Sign. Process.
,
143
, p.
106796
.10.1016/j.ymssp.2020.106796
142.
Kwarta
,
M.
, and
Allen
,
M. S.
,
2022
, “
Nonlinear Normal Mode Backbone Estimation With Near-Resonant Steady State Inputs
,”
Mech. Syst. Sign. Process.
,
162
, p.
108046
.10.1016/j.ymssp.2021.108046
143.
Peeters
,
M.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2011
, “
Dynamic Testing of Nonlinear Vibrating Structures Using Nonlinear Normal Modes
,”
J. Sound Vib.
,
330
(
3
), pp.
486
509
.10.1016/j.jsv.2010.08.028
144.
Peeters
,
M.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2011
, “
Modal Testing of Nonlinear Vibrating Structures Based on Nonlinear Normal Modes: Experimental Demonstration
,”
Mech. Syst. Sign. Process.
,
25
(
4
), pp.
1227
1247
.10.1016/j.ymssp.2010.11.006
145.
Ehrhardt
,
D.
,
Harris
,
R.
, and
Allen
,
M.
,
2014
, “Numerical and Experimental Determination of Nonlinear Normal Modes of a Circular Perforated Plate,”
Topics in Modal Analysis I, Volume 7. Conference Proceedings of the Society for Experimental Mechanics Series
,
J.
De Clerck
, ed.,
Springer
,
Cham
, pp.
239
251
.10.1007/978-3-319-04753-9_25
146.
Ehrhardt
,
D. A.
, and
Allen
,
M. S.
,
2016
, “
Measurement of Nonlinear Normal Modes Using Multi-Harmonic Stepped Force Appropriation and Free Decay
,”
Mech. Syst. Sign. Process.
,
76–77
, pp.
612
633
.10.1016/j.ymssp.2016.02.063
147.
Ehrhardt
,
D. A.
,
Hill
,
T. L.
,
Neild
,
S. A.
, and
Cooper
,
J. E.
,
2018
, “
Veering and Nonlinear Interactions of a Clamped Beam in Bending and Torsion
,”
J. Sound Vib.
,
416
, pp.
1
16
.10.1016/j.jsv.2017.11.045
148.
Ehrhardt
,
D. A.
,
Hill
,
T. L.
, and
Neild
,
S. A.
,
2019
, “
Experimentally Measuring an Isolated Branch of Nonlinear Normal Modes
,”
J. Sound Vib.
,
457
, pp.
213
226
.10.1016/j.jsv.2019.06.006
149.
Peter
,
S.
,
Riethmüller
,
R.
, and
Leine
,
R.
,
2016
, “
Tracking of Backbone Curves of Nonlinear Systems Using Phase-Locked-Loops
,”
Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series
,
G.
Kerschen
, eds.,
Springer
,
Cham, Switzerland
, pp.
107
120
.10.1007/978-3-319-29739-2_11
150.
Peter
,
S.
, and
Leine
,
R. I.
,
2017
, “
Excitation Power Quantities in Phase Resonance Testing of Nonlinear Systems With Phase-Locked-Loop Excitation
,”
Mech. Syst. Sign. Process.
,
96
, pp.
139
158
.10.1016/j.ymssp.2017.04.011
151.
Scheel
,
M.
,
Peter
,
S.
,
Leine
,
R. I.
, and
Krack
,
M.
,
2018
, “
A Phase Resonance Approach for Modal Testing of Structures With Nonlinear Dissipation
,”
J. Sound Vib.
,
435
, pp.
56
73
.10.1016/j.jsv.2018.07.010
152.
Peter
,
S.
,
Scheel
,
M.
,
Krack
,
M.
, and
Leine
,
R. I.
,
2018
, “
Synthesis of Nonlinear Frequency Responses With Experimentally Extracted Nonlinear Modes
,”
Mech. Syst. Sign. Process.
,
101
, pp.
498
515
.10.1016/j.ymssp.2017.09.014
153.
Al-Shudeifat
,
M. A.
,
Wierschem
,
N. E.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2017
, “
Numerical and Experimental Investigations of a Rotating Nonlinear Energy Sink
,”
Meccanica
,
52
(
4–5
), pp.
763
779
.10.1007/s11012-016-0422-2
154.
Moore
,
K. J.
,
Kurt
,
M.
,
Eriten
,
M.
,
McFarlan
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2019
, “
Direct Detection of Nonlinear Modal Interactions From Time Series Measurements
,”
Mech. Syst. Sign. Process.
,
125
, pp.
311
329
.10.1016/j.ymssp.2017.09.010
155.
Tsialiamanis
,
G.
,
Champneys
,
M. D.
,
Dervilis
,
N.
,
Wagg
,
D. J.
, and
Worden
,
K.
,
2022
, “
On the Application of Generative Adversarial Networks for Nonlinear Modal Analysis
,”
Mech. Syst. Sign., Process.
,
166
, p.
108473
.10.1016/j.ymssp.2021.108473
156.
Arvin
,
H.
, and
Bakhtiari-Nejad
,
F.
,
2011
, “
Non-Linear Modal Analysis of a Rotating Beam
,”
Int. J. Non-Linear Mech.
,
46
(
6
), pp.
877
897
.10.1016/j.ijnonlinmec.2011.03.017
157.
Palacios
,
R.
,
2011
, “
Nonlinear Normal Modes in an Intrinsic Theory of Anisotropic Beams
,”
J. Sound Vib.
,
330
(
8
), pp.
1772
1792
.10.1016/j.jsv.2010.10.023
158.
Hodges
,
D.
,
2003
, “
Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams
,”
AIAA J.
,
41
(
6
), pp.
1131
1137
.10.2514/2.2054
159.
Arvin
,
H.
,
Bakhtiari-Nejad
,
F.
, and
Lacarbonara
,
W.
,
2012
, “
A Geometrically Exact Approach to the Overall Dynamics of Rotating Blades – Part 2: Nonlinear Normal Modes in Flapping
,”
Nonlinear Dyn.
,
70
(
3
), pp.
2279
2301
.10.1007/s11071-012-0619-4
160.
Arvin
,
H.
, and
Lacarbonara
,
W.
,
2014
, “
A Fully Nonlinear Dynamic Formulation for Rotating Composite Beams: Nonlinear Normal Modes in Flapping
,”
Compos. Struct.
,
109
, pp.
93
105
.10.1016/j.compstruct.2013.10.044
161.
Machado
,
S. P.
, and
Piovan
,
M. T.
,
2013
, “
Nonlinear Dynamics of Rotating Box FGM Beams Using Nonlinear Normal Modes
,”
Thin-Walled Struct.
,
62
, pp.
158
168
.10.1016/j.tws.2012.09.005
162.
Gavassoni
,
E.
,
Gonçalves
,
P. B.
, and
Roehl
,
D. M.
,
2015
, “
Nonlinear Vibration Modes of an Offshore Articulated Tower
,”
Ocean Eng.
,
109
(
1
), pp.
226
242
.10.1016/j.oceaneng.2015.08.028
163.
Dou
,
S.
, and
Jensen
,
J. S.
,
2016
, “
Optimization of Hardening/Softening Behavior of Plane Frame Structures Using Nonlinear Normal Modes
,”
Comput. Struct.
,
164
, pp.
63
74
.10.1016/j.compstruc.2015.11.001
164.
Lacarbonara
,
W.
,
Carboni
,
B.
, and
Quaranta
,
G.
,
2016
, “
Nonlinear Normal Modes for Damage Detection
,”
Meccanica
,
51
(
11
), pp.
2629
2645
.10.1007/s11012-016-0453-8
165.
González-Carbajal
,
J.
,
García-Vallejo
,
D.
, and
Domínguez
,
J.
,
2017
, “
Study of the Contribution of Nonlinear Normal Modes (NNMs) in Large Amplitude Oscillations of Simply Supported Beams
,”
Procedia Eng.
,
199
, pp.
625
630
.10.1016/j.proeng.2017.09.109
166.
Ehrhardt
,
D. A.
,
Allen
,
M. S.
,
Beberniss
,
T. J.
, and
Neild
,
S. A.
,
2017
, “
Finite Element Model Calibration of a Nonlinear Perforated Plate
,”
J. Sound Vib.
,
392
, pp.
280
294
.10.1016/j.jsv.2016.12.037
167.
Avramov
,
K. V.
,
2012
, “
Nonlinear Modes of Vibrations for Simply Supported Cylindrical Shell With Geometrical Nonlinearity
,”
Acta Mech.
,
223
(
2
), pp.
279
292
.10.1007/s00707-011-0556-1
168.
Breslavsky
,
I.
, and
Avramov
,
K.
,
2011
, “
Nonlinear Modes of Cylindrical Panels With Complex Boundaries. R-Function Method
,”
Meccanica
,
46
(
4
), pp.
817
832
.10.1007/s11012-010-9340-x
169.
Avramov
,
K. V.
,
Tyshkovets
,
O.
, and
Maksymenko-Sheyko
,
K. V.
,
2010
, “
Nonlinear Dynamics of Circular Plates With Cutouts. R-Function Method
,”
ASME J. Vib. Acoust.
,
132
(
5
), pp.
457
462
.
170.
Rvachev
,
V. L.
, and
Sheiko
,
T. I.
,
1995
, “
R-Functions in Boundary Value Problems in Mechanics
,”
Appl. Mech. Rev.
,
48
(
4
), pp.
151
188
.10.1115/1.3005099
171.
Breslavsky
,
I. D.
,
Strel'nikova
,
E. A.
, and
Avramov
,
K. V.
,
2011
, “
Dynamics of Shallow Shells With Geometrical Nonlinearity Interacting With Fluid
,”
Comput. Struct.
,
89
(
5–6
), pp.
496
506
.10.1016/j.compstruc.2010.12.006
172.
Avramov
,
K. V.
,
Papazov
,
S. V.
, and
Breslavsky
,
I. D.
,
2017
, “
Dynamic Instability of Shallow Shells in Three-Dimensional Incompressible Inviscid Potential Flow
,”
J. Sound Vib.
,
394
, pp.
593
611
.10.1016/j.jsv.2017.01.048
173.
Kochurov
,
R.
, and
Avramov
,
K. V.
,
2010
, “
Nonlinear Modes and Traveling Waves of Parametrically Excited Cylindrical Shells
,”
J. Sound Vib.
,
329
(
11
), pp.
2193
2204
.10.1016/j.jsv.2009.12.018
174.
Breslavsky
,
I. D.
, and
Avramov
,
K. V.
,
2012
, “
Two Modes Nonresonance Interaction for Rectangular Plate With Geometrical Non-Linearity
,”
Nonlinear Dyn.
,
69
(
1–2
), pp.
285
294
.10.1007/s11071-011-0264-3
175.
Peeters
,
M.
,
Kerschen
,
G.
,
Golinval
,
J. C.
,
Stéphan
,
C.
, and
Lubrina
,
P.
,
2011
, “
Nonlinear Normal Modes of a Full-Scale Aircraft, Modal Analysis Topics
,”
Conference Proceedings of the Society for Experimental Mechanics Series
, Vol.
3
,
T.
Proulx
, ed.,
Springer
,
New York
, pp.
223
242
.10.1007/978-1-4419-9299-4_19
176.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Stéphan
,
C.
,
2013
, “
Nonlinear Modal Analysis of a Full-Scale Aircraft
,”
J. Aircr.
,
50
(
5
), pp.
1409
1419
.10.2514/1.C031918
177.
Noel
,
J. P.
,
Renson
,
L.
, and
Kerschen
,
G.
,
2014
, “
Complex Dynamics of a Nonlinear Aerospace Structure: Experimental Identification and Modal Interactions
,”
J. Sound Vib.
,
333
(
12
), pp.
2588
2607
.10.1016/j.jsv.2014.01.024
178.
Renson
,
L.
,
Noël
,
J. P.
, and
Kerschen
,
G.
,
2015
, “
Complex Dynamics of a Nonlinear Aerospace Structure: Numerical Continuation and Normal Modes
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1293
1309
.10.1007/s11071-014-1743-0
179.
Avramov
,
K. V.
,
Filipkovsky
,
S.
,
Pirog
,
V. A.
,
Tonkonogenko
,
A. M.
, and
Klimenko
,
D. V.
,
2016
, “
Nonlinear Longitudinal Oscillations of Fuel in Space Rockets Pipelines With Dampers
,”
Acta Astronaut.
,
120
, pp.
20
29
.10.1016/j.actaastro.2015.11.028
180.
Avramov
,
K. V.
, and
Borysiuk
,
O. V.
,
2012
, “
Nonlinear Dynamics of One Disk Asymmetrical Rotor Supported by Two Journal Bearings
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1201
1219
.10.1007/s11071-011-0063-x
181.
Chen
,
Y.
, and
Jiang
,
J.
,
2013
, “
Determination of Nonlinear Normal Modes of a Planar Nonlinear System With a Constraint Condition
,”
J. Sound Vib.
,
332
(
20
), pp.
5151
5161
.10.1016/j.jsv.2013.04.040
182.
Gavassoni
,
E.
,
Gonçalves
,
P. B.
, and
Roehl
,
D. M.
,
2014
, “
Nonlinear Vibration Modes and Instability of a Conceptual Model of a Spar Platform
,”
Nonlinear Dyn.
,
76
(
1
), pp.
809
826
.10.1007/s11071-013-1171-6
183.
Uspensky
,
B.
,
Avramov
,
K.
,
Liubarskyi
,
B.
,
Andrieiev
,
Y.
, and
Nikonov
,
O.
,
2019
, “
Nonlinear Torsional Vibrations of Electromechanical Coupling of Diesel Engine Gear System and Electrical Generator
,”
J. Sound Vib.
,
460
, p.
114877
.10.1016/j.jsv.2019.114877
184.
Hong
,
J.
,
Yu
,
P.
,
Zhang
,
D.
, and
Ma
,
Y.
,
2019
, “
Nonlinear Dynamic Analysis Using the Complex Nonlinear Modes for a Rotor System With an Additional Constraint Due to Rub-Impact
,”
Mech. Syst. Sign. Process.
,
116
, pp.
443
461
.10.1016/j.ymssp.2018.06.061
185.
Yu
,
P.
,
Ma
,
Y.
,
Hong
,
J.
, and
Chen
,
G.
,
2021
, “
Application of Complex Nonlinear Modes to Determine Dry Whip Motion in a Rubbing Rotor System
,”
Chin. J. Aeronaut.
,
34
(
1
), pp.
209
225
.10.1016/j.cja.2020.09.049
186.
Sun
,
Y.
,
Yuan
,
J.
,
Pesaresi
,
L.
,
Denimal
,
E.
, and
Salles
,
L.
,
2020
, “
Parametric Study and Uncertainty Quantification of the Nonlinear Modal Properties of Frictional Dampers
,”
J. Vib. Acoust.
,
142
(
5
), p.
051102
.10.1115/1.4046953
187.
Wu
,
Y. G.
,
Li
,
L.
,
Fan
,
Y.
,
Zucca
,
S.
,
Gastaldi
,
C.
, and
Ma
,
H. Y.
,
2020
, “
Design of Dry Friction and Piezoelectric Hybrid Ring Dampers for Integrally Bladed Disks Based on Complex Nonlinear Modes
,”
Comput. Struct.
,
233
, p.
106237
.10.1016/j.compstruc.2020.106237
188.
Casini
,
P.
, and
Vestroni
,
F.
,
2011
, “
Characterization of Bifurcating Nonlinear Normal Modes in Piecewise Linear Mechanical Systems
,”
Int. J. Non-Linear Mech.
,
46
(
1
), pp.
142
150
.10.1016/j.ijnonlinmec.2010.08.002
189.
Giannini
,
O.
,
Casini
,
P.
, and
Vestroni
,
F.
,
2011
, “
Experimental Evidence of Bifurcating Nonlinear Normal Modes in Piecewiselinear Systems
,”
Nonlinear Dyn.
,
63
(
4
), pp.
655
666
.10.1007/s11071-010-9827-y
190.
Casini
,
P.
,
Giannini
,
O.
, and
Vestroni
,
F.
,
2012
, “
Persistent and Ghost Nonlinear Normal Modes in the Forced Response of Non-Smooth Systems
,”
Phys. D Nonlinear Phenom.
,
241
(
22
), pp.
2058
2067
.10.1016/j.physd.2011.05.010
191.
Jayaprakash
,
K. R.
,
Starosvetsky
,
Y.
,
Vakakis
,
A. F.
,
Peeters
,
M.
, and
Kerschen
,
G.
,
2011
, “
Nonlinear Normal Modes and Band Zones in Granular Chains With No Pre-Compression
,”
Nonlinear Dyn.
,
63
(
3
), pp.
359
385
.10.1007/s11071-010-9809-0
192.
Starosvetsky
,
Y.
,
Jayaprakash
,
K. R.
,
Hasan
,
M. A.
, and
Vakakis
,
A. F.
,
2017
,
Topics on the Nonlinear Dynamics and Acoustics of Ordered Granular Media
,
World Scientific Press
,
Singapore
.
193.
Moussi
,
E. H.
,
Bellizzi
,
S.
,
Cochelin
,
B.
, and
Nistor
,
I.
,
2015
, “
Nonlinear Normal Modes of a Two Degrees-of-Freedom Piecewise Linear System
,”
Mech. Syst. Sign. Process.
,
64–65
, pp.
266
281
.10.1016/j.ymssp.2015.03.017
194.
Uspensky
,
B.
,
Avramov
,
K.
, and
Nikonov
,
O.
,
2019
, “
Nonlinear Modes of Piecewise Linear Systems Forced Vibrations Close to Superharmonic Resonances
,”
Proc. Inst. Mech, Part C J. Mech. Eng. Sci.
,
233
(
23–24
), pp.
7489
7497
.10.1177/0954406219869967
195.
Uspensky
,
B.
, and
Avramov
,
K.
,
2017
, “
Numerical Analysis of Nonlinear Modes of Piecewise Linear Systems Torsional Vibrations
,”
Meccanica
,
52
(
15
), pp.
3743
3757
.10.1007/s11012-017-0677-2
196.
Attar
,
M.
,
Karrech
,
A.
, and
Regenauer-Lieb
,
K.
,
2017
, “
Non-Linear Modal Analysis of Structural Components Subjected to Unilateral Constraints
,”
J. Sound Vib.
,
389
, pp.
380
410
.10.1016/j.jsv.2016.11.012
197.
Avramov
,
K.
, and
Raimberdiyev
,
T.
,
2017
, “
Modal Asymptotic Analysis of Sub-Harmonic and Quasi-Periodic Flexural Vibrations of Beams With Fatigue Crack
,”
Nonlinear Dyn.
,
88
(
2
), pp.
1213
1228
.10.1007/s11071-016-3305-0
198.
Avramov
,
K.
, and
Malyshev
,
S.
,
2019
, “
Bifurcations and Chaotic Forced Vibrations of Cantilever Beam With Breathing Cracks
,”
Eng. Fract. Mech.
,
214
, pp.
289
303
.10.1016/j.engfracmech.2019.03.021
199.
Youssef
,
B.
, and
Leine
,
R. I.
,
2021
, “
A Complete Set of Design Rules for a Vibro-Impact NES Based on a Multiple Scales Approximation of a Nonlinear Mode
,”
J. Sound Vib.
,
501
, p.
116043
.10.1016/j.jsv.2021.116043
200.
Pilipchuk
,
V. N.
,
2021
, “
Friction Induced Pattern Formations and Modal Transitions in a Mass-Spring Chain Model of Sliding Interface
,”
Mech. Syst. Sign. Process.
,
147
, p.
107119
.10.1016/j.ymssp.2020.107119
201.
Pinheiro
,
A. P.
, and
Kerschen
,
G.
,
2013
, “
Vibrational Dynamics of Vocal Folds Using Nonlinear Normal Modes
,”
Med. Eng. Phys.
,
35
(
8
), pp.
1079
1088
.10.1016/j.medengphy.2012.11.002
202.
Hendou
,
R. H.
, and
Mohammadi
,
A. K.
,
2014
, “
Transient Analysis of Nonlinear Euler–Bernoulli Micro-Beam With Thermo Elastic Damping, Via Nonlinear Normal Modes
,”
J. Sound Vib.
,
333
, pp.
6224
6236
.10.1016/j.jsv.2014.07.002
203.
Gobat
,
G.
,
Fresca
,
S.
,
Manzoni
,
A.
, and
Frangi
,
A.
,
2023
, “
Reduced Order Modeling of Nonlinear Vibrating Multiphysics Microstructures With Deep Learning-Based Approaches
,”
Sensors
,
23
(
6
), p.
3001
.10.3390/s23063001
204.
Chechin
,
G. M.
, and
Ryabov
,
D. S.
,
2020
, “
Introduction to the Theory of Bushes of Nonlinear Normal Modes for Studying Large-Amplitude Atomic Vibrations in Systems With Discrete Symmetry
,”
Lett. Mater.
,
10
(
4
), pp.
523
534
.10.22226/2410-3535-2020-4-523-534
205.
Chechin
,
G. M.
,
Ryabov
,
D. S.
, and
Shcherbinin
,
S. A.
,
2015
, “
Nonlinear Normal Mode Interactions in the SF6 Molecule Studied With the Aid of Density Functional Theory
,”
Phys. Rev. E
,
92
(
1
), p.
012907
.10.1103/PhysRevE.92.012907
206.
Chechin
,
G. M.
,
Ryabov
,
D. S.
, and
Shcherbinin
,
S. A.
,
2017
, “
Large-Amplitude in-Plane Atomic Vibrations in Strained Graphene Monolayer: Bushes of Nonlinear Normal Modes
,”
Lett. Mater.
,
7
(
4
), pp.
367
372
.10.22226/2410-3535-2017-4-367-372
207.
Shcherbinin
,
S. A.
,
Semenova
,
M. N.
,
Semenov
,
A. S.
,
Korznikova
,
E. A.
,
Chechin
,
G. M.
, and
Dmitriev
,
S. V.
,
2019
, “
Dynamics of a Three-Component Delocalized Nonlinear Vibrational Mode in Graphene
,”
Phys. Solid State
,
61
(
11
), pp.
2139
2144
.10.1134/S1063783419110313
208.
Korznikova
,
E. A.
,
Shcherbinin
,
S. A.
,
Ryabov
,
D. S.
,
Chechin
,
G. M.
,
Ekomasov
,
E. G.
,
Barani
,
E.
,
Zhou
,
K.
, and
Dmitriev
,
S. V.
,
2019
, “
Nonlinear Vibrational Modes in Graphene: Second Harmonic Generation and Negative Pressure
,”
Phys. Status Solidi B
,
256
(
1
), p.
1800061
.10.1002/pssb.201800061
209.
Shcherbinin
,
S. A.
,
Krylova
,
K. A.
,
Chechin
,
G. M.
,
Soboleva
,
E. G.
, and
Dmitriev
,
S. V.
,
2022
, “
Delocalized Nonlinear Vibrational Modes in Fcc Metals
,”
Commun. Nonlinear Sci. Numer. Simul.
,
104
, p.
106039
.10.1016/j.cnsns.2021.106039
210.
Abdullina
,
D. U.
,
Semenova
,
M. N.
,
Semenov
,
A. S.
,
Korznikova
,
E. A.
, and
Dmitriev
,
S. V.
,
2019
, “
Stability of Delocalized Nonlinear Vibrational Modes in Graphene Lattice
,”
Eur. Phys. J. B
,
92
(
11
), p.
249
.10.1140/epjb/e2019-100436-y
211.
Dmitriev
,
S. V.
,
Korznikova
,
E. A.
,
Bokij
,
D. I.
, and
Zhou
,
K.
,
2016
, “
Auxeticity From Nonlinear Vibrational Modes
,”
Phys. Status Solidi B
,
253
(
7
), pp.
1310
1317
.10.1002/pssb.201600086
212.
Korznikova
,
E. A.
,
Bachurin
,
D. V.
,
Fomin
,
S. Y.
,
Chetverikov
,
A. P.
, and
Dmitriev
,
S. V.
,
2017
, “
Instability of Vibrational Modes in Hexagonal Lattice
,”
Eur. Phys. J. B
,
90
(
2
), p.
23
.10.1140/epjb/e2016-70595-2
213.
Smirnov
,
V. V.
, and
Manevitch
,
L. I.
,
2017
, “
Large-Amplitude Nonlinear Normal Modes of the Discrete Sine Lattices
,”
Phys. Rev.
,
95
(
2–1
), p.
022212
.10.1103/PhysRevE.95.022212
214.
Ribeiro
,
P.
, and
Thomas
,
O.
,
2017
, “
Nonlinear Modes of Vibration and Internal Resonances in Nonlocal Beams
,”
J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031017
.10.1115/1.4035060
215.
Alves
,
M.
, and
Ribeiro
,
P.
,
2017
, “
Non-Linear Modes of Vibration of Timoshenko Nanobeams Under Electrostatic Actuation
,”
Int. J. Mech. Sci.
,
130
, pp.
188
202
.10.1016/j.ijmecsci.2017.06.003
216.
Sugita
,
N.
, and
Sugiura
,
T.
,
2017
, “
Nonlinear Normal Modes and Localization in Two Bubble Oscillators
,”
Ultrasonics
,
74
, pp.
174
185
.10.1016/j.ultras.2016.10.008
217.
Avramov
,
K. V.
,
2018
, “
Nonlinear Vibrations Characteristics of Single-Walled Carbon Nanotubes Via Nonlocal Elasticity
,”
Int. J. Nonlinear Mech.
,
107
, pp.
149
160
.10.1016/j.ijnonlinmec.2018.08.017
218.
Strozzi
,
M.
,
Smirnov
,
V. V.
,
Manevitch
,
L. I.
, and
Pellicano
,
F.
,
2020
, “
Nonlinear Normal Modes, Resonances and Energy Exchange in Single-Walled Carbon Nanotubes
,”
Int. J. Nonlinear Mech.
,
120
, p.
103398
.10.1016/j.ijnonlinmec.2019.103398
219.
Fuller
,
N. J.
, and
Sen
,
S.
,
2020
, “
Nonlinear Normal Modes in the β-Fermi-Pasta–Ulam-Tsingou Chain
,”
Phys. A
,
553
, p.
124283
.10.1016/j.physa.2020.124283
220.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
Mojahed
,
A.
, and
Gzal
,
M.
,
2022
, “
Nonlinear Targeted Energy Transfer: State of the Art and New Perspectives
,”
Nonlinear Dyn.
,
108
(
2
), pp.
711
741
.10.1007/s11071-022-07216-w
221.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
Al-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Resonance Captures and Targeted Energy Transfers in an Inertially Coupled Rotational Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
69
(
4
), pp.
1693
1704
.10.1007/s11071-012-0379-1
222.
Kurt
,
M.
,
Eriten
,
M.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2014
, “
Frequency-Energy Plots of Steady State Solutions for Forced and Damped Systems and Vibration Isolation by Nonlinear Mode Localization
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
8
), pp.
2905
2917
.10.1016/j.cnsns.2013.12.018
223.
Ahmadabadi
,
Z. N.
,
2019
, “
Nonlinear Energy Transfer From an Engine Crankshaft to an Essentially Nonlinear Attachment
,”
J. Sound Vib.
,
443
, pp.
139
154
.10.1016/j.jsv.2018.11.040
224.
Gzal
,
M.
,
Fang
,
B.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
Gendelman
,
O. V.
,
2020
, “
Rapid Non-Resonant Intermodal Targeted Energy Transfer (IMTET) Caused by Vibro-Impact Nonlinearity
,”
Nonlinear Dyn.
,
101
(
4
), pp.
2087
2106
.10.1007/s11071-020-05909-8
225.
Manevitch
,
L. I.
,
Kovaleva
,
A.
,
Smirnov
,
V.
, and
Starosvetsky
,
Y.
,
2018
,
Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures
,
Springer
,
Singapore
.
You do not currently have access to this content.