Research Papers

Nanotopographic Biomaterials for Isolation of Circulating Tumor Cells

[+] Author and Article Information
Weiyi Qian

Department of Mechanical and
Aerospace Engineering,
New York University,
Brooklyn, NY 11201
e-mail: wq262@nyu.edu

Yan Zhang

Department of Mechanical and
Aerospace Engineering,
New York University,
Brooklyn, NY 11201
e-mail: yz2626@nyu.edu

Andrew Gordon

Department of Mechanical and
Aerospace Engineering,
New York University,
Brooklyn, NY 11201
e-mail: ag4316@nyu.edu

Weiqiang Chen

Department of Mechanical and
Aerospace Engineering,
New York University,
Brooklyn, NY 11201
e-mail: wchen@nyu.edu

1Corresponding author.

Manuscript received March 13, 2015; final manuscript received April 20, 2015; published online June 16, 2015. Assoc. Editor: Jianping Fu.

J. Nanotechnol. Eng. Med 5(4), 040901 (Nov 01, 2014) (10 pages) Paper No: NANO-15-1017; doi: 10.1115/1.4030420 History: Received March 13, 2015; Revised April 20, 2015; Online June 16, 2015

Circulating tumor cells (CTCs) shed from the primary tumor mass and circulating in the bloodstream of patients are believed to be vital to understand of cancer metastasis and progression. Capture and release of CTCs for further enumeration and molecular characterization holds the key for early cancer diagnosis, prognosis and therapy evaluation. However, detection of CTCs is challenging due to their rarity, heterogeneity and the increasing demand of viable CTCs for downstream biological analysis. Nanotopographic biomaterial-based microfluidic systems are emerging as promising tools for CTC capture with improved capture efficiency, purity, throughput and retrieval of viable CTCs. This review offers a brief overview of the recent advances in this field, including CTC detection technologies based on nanotopographic biomaterials and relevant nanofabrication methods. Additionally, the possible intracellular mechanisms of the intrinsic nanotopography sensitive responses that lead to the enhanced CTC capture are explored.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., and Thun, M. J., 2008, “Cancer Statistics,” Ca-Cancer J. Clin., 58(2), pp. 71–96. [CrossRef] [PubMed]
Wittekind, C., and Neid, M., 2005, “Cancer Invasion and Metastasis,” Oncology, 69(Suppl. 1), pp. 14–16. [CrossRef] [PubMed]
Weiss, L., 2000, “Metastasis of Cancer: A Conceptual History From Antiquity to the 1990s,” Cancer Metastasis Rev., 19(3–4), pp. 193–383. [CrossRef]
Tsuboi, M., Ohira, T., Saji, H., Miyajima, K., Kajiwara, N., Uchida, O., Usuda, J., and Kato, H., 2007, “The Present Status of Postoperative Adjuvant Chemotherapy for Completely Resected Non-Small Cell Lung Cancer,” Ann. Thorac. Cardiovasc. Surg., 13(2), pp. 73–77. [PubMed]
O'Flaherty, J. D., Gray, S., Richard, D., Fennell, D., O'Leary, J. J., Blackhall, F. H., and O'Byrne, K. J., 2012, “Circulating Tumour Cells, Their Role in Metastasis and Their Clinical Utility in Lung Cancer,” Lung Cancer, 76(1), pp. 19–25. [CrossRef] [PubMed]
Plaks, V., Koopman, C. D., and Werb, Z., 2013, “Circulating Tumor Cells,” Science, 341(6151), pp. 1186–1188. [CrossRef] [PubMed]
Conteduca, V., Zamarchi, R., Rossi, E., Condelli, V., Troiani, L., and Aieta, M., 2013, “Circulating Tumor Cells: Utopia or Reality?,” Future Oncol., 9(9), pp. 1337–1352. [CrossRef] [PubMed]
Barradas, A., and Terstappen, L. W., 2013, “Towards the Biological Understanding of CTC: Capture Technologies, Definitions and Potential to Create Metastasis,” Cancer, 5(4), pp. 1619–1642. [CrossRef]
Cristofanilli, M., Budd, G. T., Ellis, M. J., Stopeck, A., Matera, J., Miller, M. C., Reuben, J. M., Doyle, G. V., Allard, W. J., Terstappen, L. W. M. M., and Hayes, D. F., 2004, “Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer,” N. Eng. J. Med., 351(8), pp. 781–791. [CrossRef]
Danila, D. C., Heller, G., Gignac, G. A., Gonzalez-Espinoza, R., Anand, A., Tanaka, E., Lilja, H., Schwartz, L., Larson, S., Fleisher, M., and Scher, H. I., 2007, “Circulating Tumor Cell Number and Prognosis in Progressive Castration-Resistant Prostate Cancer,” Clin. Cancer Res., 13(23), pp. 7053–7058. [CrossRef] [PubMed]
de Bono, J. S., Scher, H. I., Montgomery, R. B., Parker, C., Miller, M. C., Tissing, H., Doyle, G. V., Terstappen, L. W. W. M., Pienta, K. J., and Raghavan, D., 2008, “Circulating Tumor Cells Predict Survival Benefit From Treatment in Metastatic Castration-Resistant Prostate Cancer,” Clin. Cancer Res., 14(19), pp. 6302–6309. [CrossRef] [PubMed]
Budd, G. T., Cristofanilli, M., Ellis, M. J., Stopeck, A., Borden, E., Miller, M. C., Matera, J., Repollet, M., Doyle, G. V., Terstappen, L. W. M. M., and Hayes, D. F., 2006, “Circulating Tumor Cells Versus Imaging—Predicting Overall Survival in Metastatic Breast Cancer,” Clin. Cancer Res., 12(21), pp. 6403–6409. [CrossRef] [PubMed]
Wülfing, P., Borchard, J., Buerger, H., Heidl, S., Zänker, K. S., Kiesel, L., and Brandt, B., 2006, “HER2-Positive Circulating Tumor Cells Indicate Poor Clinical Outcome in Stage I to III Breast Cancer Patients,” Clin. Cancer Res., 12(6), pp. 1715–1720. [CrossRef] [PubMed]
Riethdorf, S., Müller, V., Zhang, L., Rau, T., Loibl, S., Komor, M., Roller, M., Huober, J., Fehm, T., Schrader, I., Hilfrich, J., Holms, F., Tesch, H., Eidtmann, H., Untch, M., von Minckwitz, G., and Pantel, K., 2010, “Detection and HER2 Expression of Circulating Tumor Cells: Prospective Monitoring in Breast Cancer Patients Treated in the Neoadjuvant GeparQuattro Trial,” Clin. Cancer Res., 16(9), pp. 2634–2645. [CrossRef] [PubMed]
Cohen, S. J., Punt, C. J. A., Iannotti, N., Saidman, B. H., Sabbath, K. D., Gabrail, N. Y., Picus, J., Morse, M. A., Mitchell, E., Miller, M. C., Doyle, G. V., Tissing, H., Terstappen, L. W. M. M., and Meropol, N. J., 2009, “Prognostic Significance of Circulating Tumor Cells in Patients With Metastatic Colorectal Cancer,” Ann. Oncol., 20(7), pp. 1223–1229. [CrossRef] [PubMed]
Moreno, J. G., Miller, M. C., Gross, S., Allard, W. J., Gomella, L. G., and Terstappen, L. W. M. M., 2005, “Circulating Tumor Cells Predict Survival in Patients With Metastatic Prostate Cancer,” Urology, 65(4), pp. 713–718. [CrossRef] [PubMed]
Fehm, T., Morrison, L., Saboorian, H., Hynan, L., Tucker, T., and Uhr, J., 2002, “Patterns of Aneusomy for Three Chromosomes in Individual Cells From Breast Cancer Tumors,” Breast Cancer Res. Treat., 75(3), pp. 227–239. [CrossRef] [PubMed]
Paterlini-Brechot, P., and Benali, N. L., 2007, “Circulating Tumor Cells (CTC) Detection: Clinical Impact and Future Directions,” Cancer Lett., 253(2), pp. 180–204. [CrossRef] [PubMed]
Riethdorf, S., and Pantel, K., 2008, “Disseminated Tumor Cells in Bone Marrow and Circulating Tumor Cells in Blood of Breast Cancer Patients: Current State of Detection and Characterization,” Pathobiol.: J. Immunopathol., Mol. Cell. Biol., 75(2), pp. 140–148. [CrossRef]
Dotan, E., Cohen, S. J., Alpaugh, K. R., and Meropol, N. J., 2009, “Circulating Tumor Cells: Evolving Evidence and Future Challenges,” Oncologist, 14(11), pp. 1070–1082. [CrossRef] [PubMed]
Willipinski-Stapelfeldt, B., Riethdorf, S., Assmann, V., Woelfle, U., Rau, T., Sauter, G., Heukeshoven, J., and Pantel, K., 2005, “Changes in Cytoskeletal Protein Composition Indicative of an Epithelial-Mesenchymal Transition in Human Micrometastatic and Primary Breast Carcinoma Cells,” Clin. Cancer Res., 11(22), pp. 8006–8014. [CrossRef] [PubMed]
Bednarz-Knoll, N., Alix-Panabières, C., and Pantel, K., 2012, “Plasticity of Disseminating Cancer Cells in Patients With Epithelial Malignancies,” Cancer Metastasis Rev., 31(3–4), pp. 673–687. [CrossRef] [PubMed]
Gasch, C., Bauernhofer, T., Pichler, M., Langer-Freitag, S., Reeh, M., Seifert, A. M., Mauermann, O., Izbicki, J. R., Pantel, K., and Riethdorf, S., 2013, “Heterogeneity of Epidermal Growth Factor Receptor Status and Mutations of KRAS/PIK3CA in Circulating Tumor Cells of Patients With Colorectal Cancer,” Clin. Chem., 59(1), pp. 252–260. [CrossRef] [PubMed]
Punnoose, E. A., Atwal, S. K., Spoerke, J. M., Savage, H., Pandita, A., Yeh, R.-F., Pirzkall, A., Fine, B. M., Amler, L. C., and Chen, D. S., 2010, “Molecular Biomarker Analyses Using Circulating Tumor Cells,” PLoS One, 5(9), p. e12517. [CrossRef] [PubMed]
Gorges, T., Tinhofer, I., Drosch, M., Rose, L., Zollner, T., Krahn, T., and von Ahsen, O., 2012, “Circulating Tumour Cells Escape From EpCAM-Based Detection Due to Epithelial-to-Mesenchymal Transition,” BMC Cancer, 12(1), p. 178 (Epub ahead of print). [CrossRef]
Canavan, H. E., Cheng, X., Graham, D. J., Ratner, B. D., and Castner, D. G., 2005, “Cell Sheet Detachment Affects the Extracellular Matrix: A Surface Science Study Comparing Thermal Liftoff, Enzymatic, and Mechanical Methods,” J. Biomed. Mater. Res., Part A, 75A(1), pp. 1–13. [CrossRef]
Yu, L., Ng, S. R., Xu, Y., Dong, H., Wang, Y. J., and Li, C. M., 2013, “Advances of Lab-on-a-Chip in Isolation, Detection and Post-Processing of Circulating Tumour Cells,” Lab Chip, 13(16), pp. 3163–3182. [CrossRef] [PubMed]
Hyun, K.-A., and Jung, H.-I., 2014, “Advances and Critical Concerns With the Microfluidic Enrichments of Circulating Tumor Cells,” Lab Chip, 14(1), pp. 45–56. [CrossRef] [PubMed]
Arya, S. K., Lim, B., and Rahman, A. R. A., 2013, “Enrichment, Detection and Clinical Significance of Circulating Tumor Cells,” Lab Chip, 13(11), pp. 1995–2027. [CrossRef] [PubMed]
Chen, J., Li, J., and Sun, Y., 2012, “Microfluidic Approaches for Cancer Cell Detection, Characterization, and Separation,” Lab Chip, 12(10), pp. 1753–1767. [CrossRef] [PubMed]
Vona, G., Sabile, A., Louha, M., Sitruk, V., Romana, S., Schütze, K., Capron, F., Franco, D., Pazzagli, M., Vekemans, M., Lacour, B., Bréchot, C., and Paterlini-Bréchot, P., 2000, “Isolation by Size of Epithelial Tumor Cells: A New Method for the Immunomorphological and Molecular Characterization of Circulating Tumor Cells,” Am. J. Pathol., 156(1), pp. 57–63. [CrossRef] [PubMed]
Zheng, S., Lin, H., Liu, J.-Q., Balic, M., Datar, R., Cote, R. J., and Tai, Y.-C., 2007, “Membrane Microfilter Device for Selective Capture, Electrolysis and Genomic Analysis of Human Circulating Tumor Cells,” J. Chromatogr. A, 1162(2), pp. 154–161. [CrossRef] [PubMed]
Mohamed, H., Murray, M., Turner, J. N., and Caggana, M., 2009, “Isolation of Tumor Cells Using Size and Deformation,” J. Chromatogr. A, 1216(47), pp. 8289–8295. [CrossRef] [PubMed]
Tan, S., Yobas, L., Lee, G., Ong, C., and Lim, C., 2009, “Microdevice for the Isolation and Enumeration of Cancer Cells From Blood,” Biomed. Microdevices, 11(4), pp. 883–892. [CrossRef] [PubMed]
Lin, H. K., Zheng, S., Williams, A. J., Balic, M., Groshen, S., Scher, H. I., Fleisher, M., Stadler, W., Datar, R. H., Tai, Y.-C., and Cote, R. J., 2010, “Portable Filter-Based Microdevice for Detection and Characterization of Circulating Tumor Cells,” Clin. Cancer Res., 16(20), pp. 5011–5018. [CrossRef] [PubMed]
Lim, L. S., Hu, M., Huang, M. C., Cheong, W. C., Gan, A. T. L., Looi, X. L., Leong, S. M., Koay, E. S.-C., and Li, M.-H., 2012, “Microsieve Lab-Chip Device for Rapid Enumeration and Fluorescence In Situ Hybridization of Circulating Tumor Cells,” Lab Chip, 12(21), pp. 4388–4396. [CrossRef] [PubMed]
Di Carlo, D., Irimia, D., Tompkins, R. G., and Toner, M., 2007, “Continuous Inertial Focusing, Ordering, and Separation of Particles in Microchannels,” Proc. Natl. Acad. Sci. U. S. A., 104(48), pp. 18892–18897. [CrossRef] [PubMed]
Hur, S. C., Mach, A. J., and Di Carlo, D., 2011, “High-Throughput Size-Based Rare Cell Enrichment Using Microscale Vortices,” Biomicrofluidics, 5(2), p. 022206. [CrossRef]
Loutherback, K., D'Silva, J., Liu, L., Wu, A., Austin, R. H., and Sturm, J. C., 2012, “Deterministic Separation of Cancer Cells From Blood at 10 mL/min,” AIP Adv., 2(4), p. 042107. [CrossRef]
Warkiani, M. E., Guan, G., Luan, K. B., Lee, W. C., Bhagat, A. A. S., Kant Chaudhuri, P., Tan, D. S.-W., Lim, W. T., Lee, S. C., Chen, P. C. Y., Lim, C. T., and Han, J., 2014, “Slanted Spiral Microfluidics for the Ultra-Fast, Label-Free Isolation of Circulating Tumor Cells,” Lab Chip, 14(1), pp. 128–137. [CrossRef] [PubMed]
Liu, Z., Huang, F., Du, J., Shu, W., Feng, H., Xu, X., and Chen, Y., 2013, “Rapid Isolation of Cancer Cells Using Microfluidic Deterministic Lateral Displacement Structure,” Biomicrofluidics, 7(1), p. 011801. [CrossRef]
Ozkumur, E., Shah, A. M., Ciciliano, J. C., Emmink, B. L., Miyamoto, D. T., Brachtel, E., Yu, M., Chen, P.-I., Morgan, B., Trautwein, J., Kimura, A., Sengupta, S., Stott, S. L., Karabacak, N. M., Barber, T. A., Walsh, J. R., Smith, K., Spuhler, P. S., Sullivan, J. P., Lee, R. J., Ting, D. T., Luo, X., Shaw, A. T., Bardia, A., Sequist, L. V., Louis, D. N., Maheswaran, S., Kapur, R., Haber, D. A., and Toner, M., 2013, “Inertial Focusing for Tumor Antigen‐Dependent and‐Independent Sorting of Rare Circulating Tumor Cells,” Sci. Trans. Med., 5(179), p. 179ra147. [CrossRef]
Yang, J., Huang, Y., Wang, X., Wang, X.-B., Becker, F. F., and Gascoyne, P. R. C., 1999, “Dielectric Properties of Human Leukocyte Subpopulations Determined by Electrorotation as a Cell Separation Criterion,” Biophys. J., 76(6), pp. 3307–3314. [CrossRef] [PubMed]
Fabbri, F., Carloni, S., Zoli, W., Ulivi, P., Gallerani, G., Fici, P., Chiadini, E., Passardi, A., Frassineti, G. L., Ragazzini, A., and Amadori, D., 2013, “Detection and Recovery of Circulating Colon Cancer Cells Using a Dielectrophoresis-Based Device: KRAS Mutation Status in Pure CTCs,” Cancer Lett., 335(1), pp. 225–231. [CrossRef] [PubMed]
Peeters, D. J. E., De Laere, B., Van den Eynden, G. G., Van Laere, S. J., Rothe, F., Ignatiadis, M., Sieuwerts, A. M., Lambrechts, D., Rutten, A., van Dam, P. A., Pauwels, P., Peeters, M., Vermeulen, P. B., and Dirix, L. Y., 2013, “Semiautomated Isolation and Molecular Characterisation of Single or Highly Purified Tumour Cells From CellSearch Enriched Blood Samples Using Dielectrophoretic Cell Sorting,” Br. J. Cancer, 108(6), pp. 1358–1367. [CrossRef] [PubMed]
Hodgkinson, C. L., Morrow, C. J., Li, Y., Metcalf, R. L., Rothwell, D. G., Trapani, F., Polanski, R., Burt, D. J., Simpson, K. L., Morris, K., Pepper, S. D., Nonaka, D., Greystoke, A., Kelly, P., Bola, B., Krebs, M. G., Antonello, J., Ayub, M., Faulkner, S., Priest, L., Carter, L., Tate, C., Miller, C. J., Blackhall, F., Brady, G., and Dive, C., 2014, “Tumorigenicity and Genetic Profiling of Circulating Tumor Cells in Small-Cell Lung Cancer,” Nat. Med., 20(8), pp. 897–903. [CrossRef] [PubMed]
Shafiee, H., Caldwell, J., Sano, M., and Davalos, R., 2009, “Contactless Dielectrophoresis: A New Technique for Cell Manipulation,” Biomed. Microdevices, 11(5), pp. 997–1006. [CrossRef] [PubMed]
Salmanzadeh, A., Romero, L., Shafiee, H., Gallo-Villanueva, R. C., Stremler, M. A., Cramer, S. D., and Davalos, R. V., 2012, “Isolation of Prostate Tumor Initiating Cells (TICs) Through Their Dielectrophoretic Signature,” Lab Chip, 12(1), pp. 182–189. [CrossRef] [PubMed]
Becker, F. F., Wang, X. B., Huang, Y., Pethig, R., Vykoukal, J., and Gascoyne, P. R., 1995, “Separation of Human Breast Cancer Cells From Blood by Differential Dielectric Affinity,” Proc. Natl. Acad. Sci. U. S. A., 92(3), pp. 860–864. [CrossRef] [PubMed]
Herlyn, M., Steplewski, Z., Herlyn, D., and Koprowski, H., 1979, “Colorectal Carcinoma-Specific Antigen: Detection by Means of Monoclonal Antibodies,” Proc. Natl. Acad. Sci. U. S. A., 76(3), pp. 1438–1442. [CrossRef] [PubMed]
Edwards, D. P., Grzyb, K. T., Dressler, L. G., Mansel, R. E., Zava, D. T., Sledge, G. W., and McGuire, W. L., 1986, “Monoclonal Antibody Identification and Characterization of a Mr 43,000 Membrane Glycoprotein Associated With Human Breast Cancer,” Cancer Res., 46(3), pp. 1306–1317. [PubMed]
Chang, S. S., Reuter, V. E., Heston, W. D. W., Bander, N. H., Grauer, L. S., and Gaudin, P. B., 1999, “Five Different Anti-Prostate-Specific Membrane Antigen (PSMA) Antibodies Confirm PSMA Expression in Tumor-Associated Neovasculature,” Cancer Res., 59(13), pp. 3192–3198. [PubMed]
Riethdorf, S., Fritsche, H., Müller, V., Rau, T., Schindlbeck, C., Rack, B., Janni, W., Coith, C., Beck, K., Jänicke, F., Jackson, S., Gornet, T., Cristofanilli, M., and Pantel, K., 2007, “Detection of Circulating Tumor Cells in Peripheral Blood of Patients With Metastatic Breast Cancer: A Validation Study of the CellSearch System,” Clin. Cancer Res., 13(3), pp. 920–928. [CrossRef] [PubMed]
Kalluri, R., and Weinberg, R. A., 2009, “The Basics of Epithelial-Mesenchymal Transition,” J. Clin. Invest., 119(6), pp. 1420–1428. [CrossRef] [PubMed]
Kalluri, R., 2009, “EMT: When Epithelial Cells Decide to Become Mesenchymal-Like Cells,” J. Clin. Invest., 119(6), pp. 1417–1419. [CrossRef] [PubMed]
Sieuwerts, A. M., Kraan, J., Bolt, J., van der Spoel, P., Elstrodt, F., Schutte, M., Martens, J. W. M., Gratama, J.-W., Sleijfer, S., and Foekens, J. A., 2009, “Anti-Epithelial Cell Adhesion Molecule Antibodies and the Detection of Circulating Normal-Like Breast Tumor Cells,” J. Natl. Cancer Inst., 101(1), pp. 61–66. [CrossRef] [PubMed]
Farokhzad, O. C., Jon, S., Khademhosseini, A., Tran, T.-N. T., LaVan, D. A., and Langer, R., 2004, “Nanoparticle-Aptamer Bioconjugates: A New Approach for Targeting Prostate Cancer Cells,” Cancer Res., 64(21), pp. 7668–7672. [CrossRef] [PubMed]
Song, K.-M., Lee, S., and Ban, C., 2012, “Aptamers and Their Biological Applications,” Sensors, 12(1), pp. 612–631. [CrossRef] [PubMed]
Dharmasiri, U., Balamurugan, S., Adams, A. A., Okagbare, P. I., Obubuafo, A., and Soper, S. A., 2009, “Highly Efficient Capture and Enumeration of Low Abundance Prostate Cancer Cells Using Prostate-Specific Membrane Antigen Aptamers Immobilized to a Polymeric Microfluidic Device,” Electrophoresis, 30(18), pp. 3289–3300. [CrossRef] [PubMed]
Phillips, J. A., Xu, Y., Xia, Z., Fan, Z. H., and Tan, W., 2009, “Enrichment of Cancer Cells Using Aptamers Immobilized on a Microfluidic Channel,” Anal. Chem., 81(3), pp. 1033–1039. [CrossRef] [PubMed]
Wan, Y., Tan, J., Asghar, W., Kim, Y.-t., Liu, Y., and Iqbal, S. M., 2011, “Velocity Effect on Aptamer-Based Circulating Tumor Cell Isolation in Microfluidic Devices,” J. Phys. Chem. B, 115(47), pp. 13891–13896. [CrossRef] [PubMed]
Zhang, J., Sheng, W., and Fan, Z. H., 2014, “An Ensemble of Aptamers and Antibodies for Multivalent Capture of Cancer Cells,” Chem. Commun., 50(51), pp. 6722–6725. [CrossRef]
Wan, Y., Liu, Y., Allen, P. B., Asghar, W., Mahmood, M. A. I., Tan, J., Duhon, H., Kim, Y.-t., Ellington, A. D., and Iqbal, S. M., 2012, “Capture, Isolation, and Release of Cancer Cells With Aptamer-Functionalized Glass Bead Array,” Lab Chip, 12(22), pp. 4693–4701. [CrossRef] [PubMed]
Wan, Y., Mahmood, M. A. I., Li, N., Allen, P. B., Kim, Y.-T., Bachoo, R., Ellington, A. D., and Iqbal, S. M., 2012, “Nanotextured Substrates With Immobilized Aptamers for Cancer Cell Isolation and Cytology,” Cancer, 118(4), pp. 1145–1154. [CrossRef] [PubMed]
Shen, Q., Xu, L., Zhao, L., Wu, D., Fan, Y., Zhou, Y., OuYang, W.-H., Xu, X., Zhang, Z., Song, M., Lee, T., Garcia, M. A., Xiong, B., Hou, S., Tseng, H.-R., and Fang, X., 2013, “Specific Capture and Release of Circulating Tumor Cells Using Aptamer-Modified Nanosubstrates,” Adv. Mater., 25(16), pp. 2368–2373. [CrossRef] [PubMed]
Song, Y., Zhu, Z., An, Y., Zhang, W., Zhang, H., Liu, D., Yu, C., Duan, W., and Yang, C. J., 2013, “Selection of DNA Aptamers against Epithelial Cell Adhesion Molecule for Cancer Cell Imaging and Circulating Tumor Cell Capture,” Anal. Chem., 85(8), pp. 4141–4149. [CrossRef] [PubMed]
Wang, L., Asghar, W., Demirci, U., and Wan, Y., 2013, “Nanostructured Substrates for Isolation of Circulating Tumor Cells,” Nano Today, 8(4), pp. 374–387. [CrossRef]
Lu, P., Weaver, V. M., and Werb, Z., 2012, “The Extracellular Matrix: A Dynamic Niche in Cancer Progression,” J. Cell Biol., 196(4), pp. 395–406. [CrossRef] [PubMed]
Takagi, J., Petre, B. M., Walz, T., and Springer, T. A., 2002, “Global Conformational Rearrangements in Integrin Extracellular Domains in Outside-In and Inside-Out Signaling,” Cell, 110(5), pp. 599–611. [CrossRef] [PubMed]
Park, J., Bauer, S., von der Mark, K., and Schmuki, P., 2007, “Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate,” Nano Lett., 7(6), pp. 1686–1691. [CrossRef] [PubMed]
Crisan, M., Yap, S., Casteilla, L., Chen, C.-W., Corselli, M., Park, T. S., Andriolo, G., Sun, B., Zheng, B., Zhang, L., Norotte, C., Teng, P.-N., Traas, J., Schugar, R., Deasy, B. M., Badylak, S., Bűhring, H.-J., Giacobino, J.-P., Lazzari, L., Huard, J., and Péault, B., 2008, “A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs,” Cell Stem Cell, 3(3), pp. 301–313. [CrossRef] [PubMed]
Kingham, E., and Oreffo, R. O. C., 2013, “Embryonic and Induced Pluripotent Stem Cells: Understanding, Creating, and Exploiting the Nano-Niche for Regenerative Medicine,” ACS Nano, 7(3), pp. 1867–1881. [CrossRef] [PubMed]
Kim, H. N., Jiao, A., Hwang, N. S., Kim, M. S., Kang, D. H., Kim, D.-H., and Suh, K.-Y., 2013, “Nanotopography-Guided Tissue Engineering and Regenerative Medicine,” Adv. Drug Delivery Rev., 65(4), pp. 536–558. [CrossRef]
McNamara, L. E., Sjöström, T., Seunarine, K., Meek, R. D., Su, B., and Dalby, M. J., 2014, “Investigation of the Limits of Nanoscale Filopodial Interactions,” J. Tissue Eng., 13(5) (in press). [CrossRef]
Smith, I. O., Liu, X. H., Smith, L. A., and Ma, P. X., 2009, “Nanostructured Polymer Scaffolds for Tissue Engineering and Regenerative Medicine,” Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 1(2), pp. 226–236. [CrossRef] [PubMed]
Khang, D., Kim, S. Y., Liu-Snyder, P., Palmore, G. T. R., Durbin, S. M., and Webster, T. J., 2007, “Enhanced Fibronectin Adsorption on Carbon Nanotube/Poly(Carbonate) Urethane: Independent Role of Surface Nano-Roughness and Associated Surface Energy,” Biomaterials, 28(32), pp. 4756–4768. [CrossRef] [PubMed]
Wang, S., Liu, K., Liu, J., Yu, Z. T. F., Xu, X., Zhao, L., Lee, T., Lee, E. K., Reiss, J., Lee, Y.-K., Chung, L. W. K., Huang, J., Rettig, M., Seligson, D., Duraiswamy, K. N., Shen, C. K. F., and Tseng, H.-R., 2011, “Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates With Integrated Chaotic Micromixers,” Angew. Chem., Int. Ed., 50(13), pp. 3084–3088. [CrossRef]
Wang, S., Wang, H., Jiao, J., Chen, K.-J., Owens, G. E., Kamei, K.-i., Sun, J., Sherman, D. J., Behrenbruch, C. P., Wu, H., and Tseng, H.-R., 2009, “Three-Dimensional Nanostructured Substrates Toward Efficient Capture of Circulating Tumor Cells,” Angew. Chem., Int. Ed., 121(47), pp. 9132–9135. [CrossRef]
Lee, S.-K., Kim, G.-S., Wu, Y., Kim, D.-J., Lu, Y., Kwak, M., Han, L., Hyung, J.-H., Seol, J.-K., Sander, C., Gonzalez, A., Li, J., and Fan, R., 2012, “Nanowire Substrate-Based Laser Scanning Cytometry for Quantitation of Circulating Tumor Cells,” Nano Lett., 12(6), pp. 2697–2704. [CrossRef] [PubMed]
Zhang, N., Deng, Y., Tai, Q., Cheng, B., Zhao, L., Shen, Q., He, R., Hong, L., Liu, W., Guo, S., Liu, K., Tseng, H.-R., Xiong, B., and Zhao, X.-Z., 2012, “Electrospun TiO2 Nanofiber-Based Cell Capture Assay for Detecting Circulating Tumor Cells From Colorectal and Gastric Cancer Patients,” Adv. Mater., 24(20), pp. 2756–2760. [CrossRef] [PubMed]
Liu, H.-Q., Yu, X.-l., Cai, B., You, S.-J., He, Z.-B., Huang, Q.-Q., Rao, L., Li, S.-S., Liu, C., Sun, W.-W., Liu, W., Guo, S.-S., and Zhao, X.-Z., 2015, “Capture and Release of Cancer Cells Using Electrospun Etchable MnO2 Nanofibers Integrated in Microchannels,” Appl. Phys. Lett., 106(9), p. 093703. [CrossRef]
Hou, S., Zhao, L., Shen, Q., Yu, J., Ng, C., Kong, X., Wu, D., Song, M., Shi, X., Xu, X., OuYang, W.-H., He, R., Zhao, X.-Z., Lee, T., Brunicardi, F. C., Garcia, M. A., Ribas, A., Lo, R. S., and Tseng, H.-R., 2013, “Polymer Nanofiber-Embedded Microchips for Detection, Isolation, and Molecular Analysis of Single Circulating Melanoma Cells,” Angew. Chem., Int. Ed., 52(12), pp. 3379–3383. [CrossRef]
Zhao, L., Lu, Y.-T., Li, F., Wu, K., Hou, S., Yu, J., Shen, Q., Wu, D., Song, M., OuYang, W.-H., Luo, Z., Lee, T., Fang, X., Shao, C., Xu, X., Garcia, M. A., Chung, L. W. K., Rettig, M., Tseng, H.-R., and Posadas, E. M., 2013, “High-Purity Prostate Circulating Tumor Cell Isolation by a Polymer Nanofiber-Embedded Microchip for Whole Exome Sequencing,” Adv. Mater., 25(21), pp. 2897–2902. [CrossRef] [PubMed]
Chen, W., Weng, S., Zhang, F., Allen, S., Li, X., Bao, L., Lam, R. H. W., Macoska, J. A., Merajver, S. D., and Fu, J., 2013, “Nanoroughened Surfaces for Efficient Capture of Circulating Tumor Cells Without Using Capture Antibodies,” ACS Nano, 7(1), pp. 566–575. [CrossRef] [PubMed]
Sekine, J., Luo, S.-C., Wang, S., Zhu, B., Tseng, H.-R., and Yu, H.-H., 2011, “Functionalized Conducting Polymer Nanodots for Enhanced Cell Capturing: The Synergistic Effect of Capture Agents and Nanostructures,” Adv. Mater., 23(41), pp. 4788–4792. [CrossRef] [PubMed]
Hsiao, Y.-S., Luo, S.-C., Hou, S., Zhu, B., Sekine, J., Kuo, C.-W., Chueh, D.-Y., Yu, H.-h., Tseng, H.-R., and Chen, P., 2014, “3D Bioelectronic Interface: Capturing Circulating Tumor Cells Onto Conducting Polymer-Based Micro/Nanorod Arrays With Chemical and Topographical Control,” Small, 10(15), pp. 3012–3017. [CrossRef] [PubMed]
Yoon, H. J., Kim, T. H., Zhang, Z., Azizi, E., Pham, T. M., Paoletti, C., Lin, J., Ramnath, N., Wicha, M. S., Hayes, D. F., Simeone, D. M., and Nagrath, S., 2013, “Sensitive Capture of Circulating Tumour Cells by Functionalized Graphene Oxide Nanosheets,” Nat. Nanotechnol., 8(10), pp. 735–741. [CrossRef] [PubMed]
Hou, S., Zhao, H., Zhao, L., Shen, Q., Wei, K. S., Suh, D. Y., Nakao, A., Garcia, M. A., Song, M., Lee, T., Xiong, B., Luo, S.-C., Tseng, H.-R., and Yu, H.-H., 2013, “Capture and Stimulated Release of Circulating Tumor Cells on Polymer-Grafted Silicon Nanostructures,” Adv. Mater., 25(11), pp. 1547–1551. [CrossRef] [PubMed]
Ma, L., Yang, G., Wang, N., Zhang, P., Guo, F., Meng, J., Zhang, F., Hu, Z., Wang, S., and Zhao, Y., 2015, “Trap Effect of Three-Dimensional Fibers Network for High Efficient Cancer-Cell Capture,” Adv. Healthcare Mater., 4(6), pp. 838–843. [CrossRef]
Yang, M. T., Sniadecki, N. J., and Chen, C. S., 2007, “Geometric Considerations of Micro- to Nanoscale Elastomeric Post Arrays to Study Cellular Traction Forces,” Adv. Mater., 19(20), pp. 3119–3123. [CrossRef]
Chang, W. C., Lee, L. P., and Liepmann, D., 2005, “Biomimetic Technique for Adhesion-Based Collection and Separation of Cells in a Microfluidic Channel,” Lab Chip, 5(1), pp. 64–73. [CrossRef] [PubMed]
Liu, D., Xie, Y., Shao, H., and Jiang, X., 2009, “Using Azobenzene-Embedded Self-Assembled Monolayers to Photochemically Control Cell Adhesion Reversibly,” Angew. Chem., Int. Ed., 48(24), pp. 4406–4408. [CrossRef]
Jiang, X., Bruzewicz, D. A., Wong, A. P., Piel, M., and Whitesides, G. M., 2005, “Directing Cell Migration With Asymmetric Micropatterns,” Proc. Natl. Acad. Sci. U. S. A., 102(4), pp. 975–978. [CrossRef] [PubMed]
Dang, J. M., and Leong, K. W., 2007, “Myogenic Induction of Aligned Mesenchymal Stem Cell Sheets by Culture on Thermally Responsive Electrospun Nanofibers,” Adv. Mater., 19(19), pp. 2775–2779. [CrossRef] [PubMed]
Jan, E., and Kotov, N. A., 2007, “Successful Differentiation of Mouse Neural Stem Cells on Layer-by-Layer Assembled Single-Walled Carbon Nanotube Composite,” Nano Lett., 7(5), pp. 1123–1128. [CrossRef] [PubMed]
Chen, W., Shao, Y., Li, X., Zhao, G., and Fu, J., “Nanotopographical Surfaces for Stem Cell Fate Control: Engineering Mechanobiology From the Bottom,” Nano Today, 9(6), pp. 759–784. [CrossRef] [PubMed]
Lord, M. S., Foss, M., and Besenbacher, F., 2010, “Influence of Nanoscale Surface Topography on Protein Adsorption and Cellular Response,” Nano Today, 5(1), pp. 66–78. [CrossRef]
Bettinger, C. J., Langer, R., and Borenstein, J. T., 2009, “Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function,” Angew. Chem., Int. Ed., 48(30), pp. 5406–5415. [CrossRef]
Kim, S. T., Kim, D.-J., Kim, T.-J., Seo, D.-W., Kim, T.-H., Lee, S.-Y., Kim, K., Lee, K.-M., and Lee, S.-K., 2010, “Novel Streptavidin-Functionalized Silicon Nanowire Arrays for CD4+ T Lymphocyte Separation,” Nano Lett., 10(8), pp. 2877–2883. [CrossRef] [PubMed]
Farace, F., Massard, C., Vimond, N., Drusch, F., Jacques, N., Billiot, F., Laplanche, A., Chauchereau, A., Lacroix, L., Planchard, D., Le Moulec, S., Andre, F., Fizazi, K., Soria, J. C., and Vielh, P., 2011, “A Direct Comparison of CellSearch and ISET for Circulating Tumour-Cell Detection in Patients With Metastatic Carcinomas,” Br. J. Cancer, 105(6), pp. 847–853. [CrossRef] [PubMed]
Venugopal, J., and Ramakrishna, S., 2005, “Applications of Polymer Nanofibers in Biomedicine and Biotechnology,” Appl. Biochem. Biotechnol., 125(3), pp. 147–157. [CrossRef] [PubMed]
Li, W.-J., Laurencin, C. T., Caterson, E. J., Tuan, R. S., and Ko, F. K., 2002, “Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering,” J. Biomed. Mater. Res., 60(4), pp. 613–621. [CrossRef] [PubMed]
Hughes, A. D., and King, M. R., 2010, “Use of Naturally Occurring Halloysite Nanotubes for Enhanced Capture of Flowing Cells,” Langmuir, 26(14), pp. 12155–12164. [CrossRef] [PubMed]
Ranjan, A., and Webster, T. J., 2009, “Increased Endothelial Cell Adhesion and Elongation on Micron-Patterned Nano-Rough Poly(dimethylsiloxane) Films,” Nanotechnology, 20(30), p. 305102. [CrossRef] [PubMed]
Raimondo, T., Puckett, S., and Webster, T. J., 2010, “Greater Osteoblast and Endothelial Cell Adhesion on Nanostructured Polyethylene and Titanium,” Int. J. Nanomed., 5, pp. 647–652. [CrossRef]
Didar, T. F., and Tabrizian, M., 2010, “Adhesion Based Detection, Sorting and Enrichment of Cells in Microfluidic Lab-on-Chip Devices,” Lab Chip, 10(22), pp. 3043–3053. [CrossRef] [PubMed]
Sheng, W., Ogunwobi, O. O., Chen, T., Zhang, J., George, T. J., Liu, C., and Fan, Z. H., 2014, “Capture, Release and Culture of Circulating Tumor Cells From Pancreatic Cancer Patients Using an Enhanced Mixing Chip,” Lab Chip, 14(1), pp. 89–98. [CrossRef] [PubMed]
Liu, H., Liu, X., Meng, J., Zhang, P., Yang, G., Su, B., Sun, K., Chen, L., Han, D., Wang, S., and Jiang, L., 2013, “Hydrophobic Interaction-Mediated Capture and Release of Cancer Cells on Thermoresponsive Nanostructured Surfaces,” Adv. Mater., 25(6), pp. 922–927. [CrossRef] [PubMed]
Jeon, S., Moon, J.-M., Lee, E. S., Kim, Y. H., and Cho, Y., 2014, “An Electroactive Biotin-Doped Polypyrrole Substrate That Immobilizes and Releases EpCAM-Positive Cancer Cells,” Angew. Chem., Int. Ed., 126(18), pp. 4685–4690. [CrossRef]
Hong, W. Y., Jeon, S. H., Lee, E. S., and Cho, Y., 2014, “An Integrated Multifunctional Platform Based on Biotin-Doped Conducting Polymer Nanowires for Cell Capture, Release, and Electrochemical Sensing,” Biomaterials, 35(36), pp. 9573–9580. [CrossRef] [PubMed]
Huang, Q., Chen, B., He, R., He, Z., Cai, B., Xu, J., Qian, W., Chan, H. L., Liu, W., Guo, S., Zhao, X.-Z., and Yuan, J., 2014, “Capture and Release of Cancer Cells Based on Sacrificeable Transparent MnO2 Nanospheres Thin Film,” Adv. Healthcare Mater., 3(9), pp. 1420–1425. [CrossRef]
Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., and Shafie, S., 1980, “Metastatic Potential Correlates With Enzymatic Degradation of Basement Membrane Collagen,” Nature, 284(5751), pp. 67–68. [CrossRef] [PubMed]
Hynes, R. O., 2002, “Integrins: Bidirectional, Allosteric Signaling Machines,” Cell, 110(6), pp. 673–687. [CrossRef] [PubMed]
Askari, J. A., Buckley, P. A., Mould, A. P., and Humphries, M. J., 2009, “Linking Integrin Conformation to Function,” J. Cell Sci., 122(2), pp. 165–170. [CrossRef] [PubMed]
Teo, B. K. K., Wong, S. T., Lim, C. K., Kung, T. Y. S., Yap, C. H., Ramagopal, Y., Romer, L. H., and Yim, E. K. F., 2013, “Nanotopography Modulates Mechanotransduction of Stem Cells and Induces Differentiation Through Focal Adhesion Kinase,” ACS Nano, 7(6), pp. 4785–4798. [CrossRef] [PubMed]
Arnold, M., Cavalcanti-Adam, E. A., Glass, R., Blümmel, J., Eck, W., Kantlehner, M., Kessler, H., and Spatz, J. P., 2004, “Activation of Integrin Function by Nanopatterned Adhesive Interfaces,” ChemPhysChem, 5(3), pp. 383–388. [CrossRef] [PubMed]
Cavalcanti-Adam, E. A., Volberg, T., Micoulet, A., Kessler, H., Geiger, B., and Spatz, J. P., 2007, “Cell Spreading and Focal Adhesion Dynamics Are Regulated by Spacing of Integrin Ligands,” Biophys. J., 92(8), pp. 2964–2974. [CrossRef] [PubMed]
Schvartzman, M., Palma, M., Sable, J., Abramson, J., Hu, X., Sheetz, M. P., and Wind, S. J., 2011, “Nanolithographic Control of the Spatial Organization of Cellular Adhesion Receptors at the Single-Molecule Level,” Nano Lett., 11(3), pp. 1306–1312. [CrossRef] [PubMed]
Mitra, S. K., Hanson, D. A., and Schlaepfer, D. D., 2005, “Focal Adhesion Kinase: In Command and Control of Cell Motility,” Nat. Rev. Mol. Cell Biol., 6(1), pp. 56–68. [CrossRef] [PubMed]
Burridge, K., and Wennerberg, K., 2004, “Rho and Rac Take Center Stage,” Cell, 116(2), pp. 167–179. [CrossRef] [PubMed]
DuFort, C. C., Paszek, M. J., and Weaver, V. M., 2011, “Balancing Forces: Architectural Control of Mechanotransduction,” Nat. Rev. Mol. Cell Biol., 12(5), pp. 308–319. [CrossRef] [PubMed]
Chen, W., Villa-Diaz, L. G., Sun, Y., Weng, S., Kim, J. K., Lam, R. H. W., Han, L., Fan, R., Krebsbach, P. H., and Fu, J., 2012, “Nanotopography Influences Adhesion, Spreading, and Self-Renewal of Human Embryonic Stem Cells,” ACS Nano, 6(5), pp. 4094–4103. [CrossRef] [PubMed]
Aikawa, R., Nagai, T., Kudoh, S., Zou, Y. Z., Tanaka, M., Tamura, M., Akazawa, H., Takano, H., Nagai, R., and Komuro, I., 2002, “Integrins Play a Critical Role in Mechanical Stress-Induced p38 MAPK Activation,” Hypertension, 39(2), pp. 233–238. [CrossRef] [PubMed]
Bridgewater, R. E., Norman, J. C., and Caswell, P. T., 2012, “Integrin Trafficking at a Glance,” J. Cell Sci., 125(16), pp. 3695–3701. [CrossRef] [PubMed]
Bettinger, C. J., Zhang, Z., Gerecht, S., Borenstein, J. T., and Langer, R., 2008, “Enhancement of In Vitro Capillary Tube Formation by Substrate Nanotopography,” Adv. Mater., 20(1), pp. 99–103. [CrossRef] [PubMed]
Jaeger, R. C., 2002, Lithography. Introduction to Microelectronic Fabrication, Prentice Hall, Upper Saddle River, NJ.
Vieu, C., Carcenac, F., Pépin, A., Chen, Y., Mejias, M., Lebib, A., Manin-Ferlazzo, L., Couraud, L., and Launois, H., 2000, “Electron Beam Lithography: Resolution Limits and Applications,” Appl. Surf. Sci., 164(1–4), pp. 111–117. [CrossRef]
Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., Wilkinson, C. D. W., and Oreffo, R. O. C., 2007, “The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder,” Nat. Mater., 6(12), pp. 997–1003. [CrossRef] [PubMed]
Teixeira, A. I., Abrams, G. A., Bertics, P. J., Murphy, C. J., and Nealey, P. F., 2003, “Epithelial Contact Guidance on Well-Defined Micro- and Nanostructured Substrates,” J. Cell Sci., 116(10), pp. 1881–1892. [CrossRef] [PubMed]
Yang, S.-M., Jang, S. G., Choi, D.-G., Kim, S., and Yu, H. K., 2006, “Nanomachining by Colloidal Lithography,” Small, 2(4), pp. 458–475. [CrossRef] [PubMed]
Zhang, G., and Wang, D., 2009, “Colloidal Lithography—The Art of Nanochemical Patterning,” Chem.—Asian J., 4(2), pp. 236–245. [CrossRef] [PubMed]
Bhawalkar, S. P., Qian, J., Heiber, M. C., and Jia, L., 2010, “Development of a Colloidal Lithography Method for Patterning Nonplanar Surfaces,” Langmuir, 26(22), pp. 16662–16666. [CrossRef] [PubMed]
Chou, S. Y., Krauss, P. R., and Renstrom, P. J., 1996, “25-nm Resolution,” Science, 272(5258), pp. 85–87. [CrossRef]
Schift, H., 2008, “Nanoimprint Lithography: An Old Story in Modern Times? A Review,” J. Vac. Sci. & Amp Technol. B, 26(2), pp. 458–480. [CrossRef]
Austin, M. D., Ge, H., Wu, W., Li, M., Yu, Z., Wasserman, D., Lyon, S. A., and Chou, S. Y., 2004, “Fabrication of 5 nm Linewidth and 14 nm Pitch Features by Nanoimprint Lithography,” Appl. Phys. Lett., 84(26), pp. 5299–5301. [CrossRef]
Tan, H., Kong, L., Li, M., Steere, C., and Koecher, L., 2004, “Current Status of Nanonex Nanoimprint Solutions,” Microlithography International Society for Optics and Photonics, pp. 213–221.
Yim, E. K. F., Reano, R. M., Pang, S. W., Yee, A. F., Chen, C. S., and Leong, K. W., 2005, “Nanopattern-Induced Changes in Morphology and Motility of Smooth Muscle Cells,” Biomaterials, 26(26), pp. 5405–5413. [CrossRef] [PubMed]
Yang, K., Jung, K., Ko, E., Kim, J., Park, K. I., Kim, J., and Cho, S.-W., 2013, “Nanotopographical Manipulation of Focal Adhesion Formation for Enhanced Differentiation of Human Neural Stem Cells,” ACS Appl. Mater. Interfaces, 5(21), pp. 10529–10540. [CrossRef] [PubMed]
Odom, T. W., Love, J. C., Wolfe, D. B., Paul, K. E., and Whitesides, G. M., 2002, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps,” Langmuir, 18(13), pp. 5314–5320. [CrossRef]
Kim, D.-H., Han, K., Gupta, K., Kwon, K. W., Suh, K.-Y., and Levchenko, A., 2009, “Mechanosensitivity of Fibroblast Cell Shape and Movement to Anisotropic Substratum Topography Gradients,” Biomaterials, 30(29), pp. 5433–5444. [CrossRef] [PubMed]
Palik, E. D., Glembocki, O. J., Heard, I., Burno, P. S., and Tenerz, L., 1991, “Etching Roughness for (100) Silicon Surfaces in Aqueous KOH,” J. Appl. Phys., 70(6), pp. 3291–3300. [CrossRef]
Boyan, B. D., Batzer, R., Kieswetter, K., Liu, Y., Cochran, D. L., Szmuckler-Moncler, S., Dean, D. D., and Schwartz, Z., 1998, “Titanium Surface Roughness Alters Responsiveness of MG63 Osteoblast-Like Cells to 1α,25-(OH)2D3,” J. Biomed. Mater. Res., 39(1), pp. 77–85. [CrossRef] [PubMed]
Thapa, A., Webster, T. J., and Haberstroh, K. M., 2003, “Polymers With Nano-Dimensional Surface Features Enhance Bladder Smooth Muscle Cell Adhesion,” J. Biomed. Mater. Res., Part A, 67A(4), pp. 1374–1383. [CrossRef]
Bhardwaj, N., and Kundu, S. C., 2010, “Electrospinning: A Fascinating Fiber Fabrication Technique,” Biotechnol. Adv., 28(3), pp. 325–347. [CrossRef] [PubMed]
Greiner, A., and Wendorff, J. H., 2007, “Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers,” Angew. Chem., Int. Ed., 46(30), pp. 5670–5703. [CrossRef]
Massumi, M., Abasi, M., Babaloo, H., Terraf, P., Safi, M., Saeed, M., Barzin, J., Zandi, M., and Soleimani, M., 2011, “The Effect of Topography on Differentiation Fates of Matrigel-Coated Mouse Embryonic Stem Cells Cultured on PLGA Nanofibrous Scaffolds,” Tissue Eng. Part A, 18(5–6), pp. 609–620. [CrossRef] [PubMed]
Schindler, M., Ahmed, I., Kamal, J., Nur-E-Kamal, A., Grafe, T. H., Young Chung, H., and Meiners, S., 2005, “A Synthetic Nanofibrillar Matrix Promotes in Vivo-Like Organization and Morphogenesis for Cells in Culture,” Biomaterials, 26(28), pp. 5624–5631. [CrossRef] [PubMed]
Abrams, G. A., Goodman, S. L., Nealey, P. F., Franco, M., and Murphy, C. J., 2000, “Nanoscale Topography of the Basement Membrane Underlying the Corneal Epithelium of the Rhesus Macaque,” Cell Tissue Res., 299(1), pp. 39–46. [CrossRef] [PubMed]
Hofmann, S., Ducati, C., Neill, R. J., Piscanec, S., Ferrari, A. C., Geng, J., Dunin-Borkowski, R. E., and Robertson, J., 2003, “Gold Catalyzed Growth of Silicon Nanowires by Plasma Enhanced Chemical Vapor Deposition,” J. Appl. Phys., 94(9), pp. 6005–6012. [CrossRef]
Park, G.-S., Kwon, H., Kwak, D. W., Park, S. Y., Kim, M., Lee, J.-H., Han, H., Heo, S., Li, X. S., Lee, J. H., Kim, Y. H., Lee, J.-G., Yang, W., Cho, H. Y., Kim, S. K., and Kim, K., 2012, “Full Surface Embedding of Gold Clusters on Silicon Nanowires for Efficient Capture and Photothermal Therapy of Circulating Tumor Cells,” Nano Lett., 12(3), pp. 1638–1642. [CrossRef] [PubMed]
Lee, S.-H., Kim, B.-S., Kim, S. H., Kang, S. W., and Kim, Y. H., 2004, “Thermally Produced Biodegradable Scaffolds for Cartilage Tissue Engineering,” Macromol. Biosci., 4(8), pp. 802–810. [CrossRef] [PubMed]
Smith, L. A., Liu, X., and Ma, P. X., 2008, “Tissue Engineering With Nano-Fibrous Scaffolds,” Soft Matter, 4(11), pp. 2144–2149. [CrossRef] [PubMed]
Hong, B., and Zu, Y., 2013, “Detecting Circulating Tumor Cells: Current Challenges and New Trends,” Theranostics, 3(6), pp. 377–394. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 2

Integrins mediate cell adhesion with ECM. (a) Integrin activation triggering a shift from the low-affinity conformation (bent with a closed head) toward the intermediate affinity (extended with closed head) and high affinity (extended with open head) conformation, (b) endocytosis of β1 integrin heterodimers in their active conformation near the front of the cell, and form early endosomes, and (c) integrins are recycled to the membrane and reassemble a new FA.

Grahic Jump Location
Fig. 1

Nanotopography-enhanced capture of CTCs in microfluidic chip. (a) Nanopillar array was applied to be the substrate of microfluidics chip and was functionalized with antibody, (b) label-free nanorough surface was embedded in the microfluidics chip, (c) nanofiber-embedded microfluidics chip functionalized with aptamer, and (d) functionalized graphene oxide nanosheets in microfluidic chip.

Grahic Jump Location
Fig. 3

Nanotopographic substrates preparation methods. (a) EBL is used to fabricate well controlled nanopattern with high resolution, (b) electrospinning is the most often used technique to fabricate nanofibers, (c) RIE are capable of generating nanotopographic substrates with different nanoroughness, and (d) nano-imprinting can be used to achieve high resolution nanofabrication over large surface.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In