Research Papers

Molecular Dynamics Simulation on Effect of Nanoparticle Aggregation on Transport Properties of a Nanofluid1

[+] Author and Article Information
Hongbo Kang, Ling Li

College of Energy and Power Engineering,
University of Shanghai for Science
and Technology,
Shanghai, 200093, China

Yuwen Zhang

Fellow ASME
Department of Mechanical
and Aerospace Engineering,
University of Missouri,
Columbia, MO 65211
email: zhangyu@missouri.edu

This work was completed during the first author's visiting appointment at the University of Missouri.

2Corresponding author.

Manuscript received November 19, 2011; final manuscript received May 30, 2012; published online September 24, 2012. Assoc. Editor: Henry Hess.

J. Nanotechnol. Eng. Med 3(2), 021001 (Sep 24, 2012) (6 pages) doi:10.1115/1.4007044 History: Received November 19, 2011; Revised May 30, 2012

Effect of nanoparticle aggregation on the transport properties that include thermal conductivity and viscosity of nanofluids is studied by molecular dynamics (MD) simulation. Unlike many other MD simulations on nanofluids which have only one nanoparticle in the simulation box with periodic boundary condition, in this work, multiple nanoparticles are placed in the simulation box which makes it possible to simulate the aggregation of the nanoparticles. Thermal conductivity and viscosity of the nanofluid are calculated using Green–Kubo method and results show that the nanoparticle aggregation induces a significant enhancement of thermal conductivity in nanofluid, while the increase of viscosity is moderate. The results also indicate that different configurations of the nanoparticle cluster result in different enhancements of thermal conductivity and increase of viscosity in the nanofluid.

Copyright © 2012 by ASME
Your Session has timed out. Please sign back in to continue.


Choi, S. U. S., 2009, “Nanofluids: From Vision to Reality Through Research,” ASME J. Heat Transfer, 131(3), p. 033106. [CrossRef]
Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A., 1999, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,” ASME J. Heat Transfer, 121(2), pp.280–289. [CrossRef]
Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J., 2001, “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,” Appl. Phys. Lett., 78(6), pp.718–720. [CrossRef]
Das, S. K., Putra, N., Thiesen, P., and Roetzel, W., 2003, “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,” ASME J. Heat Transfer, 125(4), pp.567–574. [CrossRef]
Patel, H. E., Das, S. K., Sundararajan, T., Nair, A. S., George, B., and Pradeep, T., 2003, “Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects,” Appl. Phys. Lett., 83(14), pp.2931–2933. [CrossRef]
Keblinski, P., Phillpot, S. R., Choi, S. U. S., and Eastman, J. A., 2002, “Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids),” Int. J. Heat Mass Transfer, 45(4), pp.855–863. [CrossRef]
Xuan, Y., Li, Q., and Hu, W., 2003, “Aggregation Structure and Thermal Conductivity of Nanofluids,” AIChE J., 49(4), pp.1038–1043. [CrossRef]
Murshed, S. M. S., Leong, K. C., and Yang, C., 2005, “Enhanced Thermal Conductivity of TiO2—Water Based Nanofluids,” Int. J. Therm. Sci., 44(4), pp.367–373. [CrossRef]
Philip, J., Shima, P. D., and Raj, B., 2008, “Evidence for Enhanced Thermal Conduction Through Percolating Structures in Nanofluids,” Nanotechnology, 19(30), p. 305706. [CrossRef] [PubMed]
Keblinski, P., Prasher, R., and Eapen, J., 2008, “Thermal Conductance of Nanofluids: Is the Controversy Over?,” J. Nanoparticle Res., 10(7), pp.1089–1097. [CrossRef]
Karthikeyan, N. R., Philip, J., and Raj, B., 2008, “Effect of Clustering on the Thermal Conductivity of Nanofluids,” Mater. Chem. Phys., 109(1), pp.50–55. [CrossRef]
Buongiorno, J., Venerus, D. C., Prabhat, N., McKrell, T., Townsend, J., Christianson, R., Tolmachev, Y. V., Keblinski, P., Hu, L., Alvarado, J. L., Bang, I. C., Bishnoi, S. W., Bonetti, M., Botz, F., Cecere, A., Chang, Y., Chen, G., Chen, H., Chung, S. J., Chyu, M. K., Das, S. K., Di Paola, R., Ding, Y., Dubois, F., Dzido, G., Eapen, J., Escher, W., Funfschilling, D., Galand, Q., Gao, J., Gharagozloo, P. E., Goodson, K. E., Gutierrez, J. G., Hong, H., Horton, M., Hwang, K. S., Iorio, C. S., Jang, S. P., Jarzebski, A. B., Jiang, Y., Jin, L., Kabelac, S., Kamath, A., Kedzierski, M. A., Kieng, L. G., Kim, C., Kim, J.-H., Kim, S., Lee, S. H., Leong, K. C., Manna, I., Michel, B., Ni, R., Patel, H. E., Philip, J., Poulikakos, D., Reynaud, C., Savino, R., Singh, P. K., Song, P., Sundararajan, T., Timofeeva, E., Tritcak, T., Turanov, A. N., Van Vaerenbergh, S., Wen, D., Witharana, S., Yang, C., Yeh, W.-H., Zhao, X.-Z., and Zhou, S.-Q., 2009, “A Benchmark Study on the Thermal Conductivity of Nanofluids,” J. Appl. Phys., 106, p. 094312. [CrossRef]
Prasher, R., Song, D., Wang, J., and Phelan, P., 2006, “Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications,” Appl. Phys. Lett., 89(13), p. 133108. [CrossRef]
Garg, J., Poudel, B., Chiesa, M., Gordon, J. B., Ma, J. J., Wang, J. B., Ren, Z. F., Kang, Y. T., Ohtani, H., Nanda, J., Mckinley, G. H., and Chen, G., 2008, “Enhanced Thermal Conductivity and Viscosity of Copper Nanoparticles in Ethylene Glycol Nanofluid,” J. Appl. Phys., 103(7), p. 074301. [CrossRef]
Sarkar, S., and Selvam, R. P., 2007, “Molecular Dynamics Simulation of Effective Thermal Conductivity and Study of Enhanced Thermal Transport Mechanism in Nanofluids,” J. Appl. Phys., 102(7), p. 074302. [CrossRef]
Vladkov, M., and Barrat, J. L., 2006, “Modeling Transient Absorption and Thermal Conductivity in a Simple Nanofluid,” Nano Lett., 6(6), pp.1224–1228. [CrossRef] [PubMed]
Li, L., Zhang, Y. W., Ma, H. B., and Yang, M., 2009, “Molecular Dynamics Simulation of Effect of Liquid Layering Around the Nanoparticle on the Enhanced Thermal Conductivity of Nanofluids,” J. Nanopart. Res., 12(3), pp.811–821. [CrossRef]
Daw, M. S., and Baskes, M. I., 1984, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Phys. Rev. B, 29(12), pp.6443–6453. [CrossRef]
Schelling, P. K., Phillpot, S. R., and Keblinski, P., 2002, “Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity,” Phys. Rev. B, 65(14), p. 144306. [CrossRef]
McQuarrie, D. A., 2000, Statistical Mechanics, University Science Books, Sausalito.
Hoheisel, C., 1993, Theoretical Treatment of Liquids and Liquid Mixtures, Elsevier, Amsterdam.
Eapen, J., Li, J., and Yip, S., 2007, “Mechanism of Thermal Transport in Dilute Nanocolloids,” Phys. Rev. Lett., 98(2), p. 028302. [CrossRef] [PubMed]
Vogelsang, R., and Hoheisel, C., 1987, “Thermal Conductivity of the Lennard-Jones Liquid by Molecular Dynamics Calculations,” J. Chem. Phys., 86(11), pp.6371–6375. [CrossRef]
Kang, H., Zhang, Y., and Yang, M., 2011, “Molecular Dynamics Simulation of Thermal Conductivity of Cu-Ar Nanofluid Using EAM Potential for Cu-Cu Interactions,” Appl. Phys. A: Mater. Sci. Process., 103(4), pp. 1001–1008. [CrossRef]
Lide, D. R., 1993, Handbook of Chemistry and Physics, Chemical Rubber, Boca Raton.
Haile, J. M., 1997, Molecular Dynamics Simulation-Elementary Methods, Wiley, New York.
Yang, L., Gan, Y., Zhang, Y., and Chen, J. K., “Molecular Dynamics Simulation of Neck Growth in Laser Sintering of Different-Size Gold Nanoparticles Under Different Heating Rates,” Appl. Phys. A: Mater. Sci. Process., 106(3), pp. 725–735. [CrossRef]


Grahic Jump Location
Fig. 1

Thermal conductivity of pure argon using G–K method

Grahic Jump Location
Fig. 2

Shear viscosity of pure argon using G–K method

Grahic Jump Location
Fig. 3

Comparison of results in thermal conductivity and shear viscosity for different number of nanoparticles

Grahic Jump Location
Fig. 4

Aggregation of nanoparticles

Grahic Jump Location
Fig. 5

Different configurations of nanoparticle clustering



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In