Research Papers

Structure and Thermal Conductivity of Nanostructured Hafnia-Based Thermal Barrier Coating Grown on SS-403

[+] Author and Article Information
M. Noor-A-Alam

e-mail: mnooraalam@miners.utep.edu

A. R. Choudhuri

e-mail: ahsan@utep.edu

C. V. Ramana

e-mail: rvchintalapalle@utep.edu
Department of Mechanical Engineering,
University of Texas at El Paso,
El Paso, TX 79968

1Corresponding author.

Manuscript received April 20, 2012; final manuscript received March 5, 2013; published online June 27, 2013. Assoc. Editor: Debjyoti Banerjee.

J. Nanotechnol. Eng. Med 4(1), 011007 (Jun 27, 2013) (5 pages) Paper No: NANO-12-1069; doi: 10.1115/1.4024046 History: Received April 20, 2012; Revised March 05, 2013

Yttria-stabilized hafnia (YSH) coatings were grown onto stainless steel 403 (SS-403) and Si substrates. The deposition was made at various growth temperatures ranging from room temperature (RT) to 500 °C. The microstructure and thermal properties of the YSH coatings were evaluated employing grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and photoacoustic measurements. GIXRD studies indicate that the coatings crystalize in cubic structure with a (111) texturing. Well-grown triangular dense morphology was evident in SEM data. EDS analysis indicates the composition stability of YSH coatings. The grain size increases with the increasing growth temperature. Thermal conductivity measurements indicate lower thermal conductivity of YSH coatings compared to either pure hafnia or yttria-stabilized zirconia.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Matsumoto, K., ItohY., and KamedaT., 2003, “EB-PVD Process and Thermal Properties of Hafnia-Based Thermal Barrier Coating,” Sci. Technol. Adv. Mater., 4, pp. 153–158. [CrossRef]
David, R. C., and Simon, R. P., 2005, “Thermal Barrier Coating Materials,” Mater. Today, 8(6), pp. 22–29. [CrossRef]
Padture, N. P., Gell, M., and Jordan, E. H., 2002, “Thermal Barrier Coatings for Gas–Turbine Engine Applications,” Science, 296, pp. 280–284. [CrossRef] [PubMed]
Lima, R. S., Kucuk, A., and Berndt, C. C., 2001, “Evaluation of Microhardness and Elastic Modulus of Thermally Sprayed Nanostructured Zirconia Coatings,” Surf. Coat. Technol., 135, pp. 166–172. [CrossRef]
Soyez, G., Eastman, J. A., Thomson, L. J., Bai, G. R., Baldo, P. M., McCormick, A. W., DiMelfi, R. J., Elmustafa, A. A., Tambwe, M. F., and Stone, D. S., 2000, “Grain-Size-Dependent Thermal Conductivity of Nanocrystalline Yttria Stabilized Zirconia Films Grown by Metal-Organic Chemical Vapor Deposition,” Appl. Phys. Lett., 77, pp. 1155–1157. [CrossRef]
Wang, N., Zhou, C., Gong, S., and Xu, H., 2007, “Heat Treatment of Nanostructured Thermal Barrier Coating,” Ceram. Int., 33, pp. 1075–1081. [CrossRef]
Girolamo, G. Di., Marra, F., Blasi, C., Serra, E., and Valente, T., 2011, “Microstructure, Mechanical Properties and Thermal Shock Resistance of Plasma Sprayed Nanostructured Zirconia Coatings,” Ceram. Int., 37(7), pp. 2711–2717. [CrossRef]
Gurrappa, I., and Sambasiva, A., 2006, “Thermal Barrier Coatings for Enhanced Efficiency of Gas Turbine Engines,” Surf. Coat. Technol., 201, pp. 3016–3029. [CrossRef]
Zhu, D., and Miller, R. A., 1998, “Sintering and Creep Behavior of Plasma-Sprayed Zirconia- and Hafnia-Based Thermal Barrier Coatings,” Surf. Coat. Technol., 108, pp. 114–120. [CrossRef]
Shaw, L. L., Goerman, D., Ren, R., and Gell, M., 2000, “The Dependency of Microstructure and Properties of Nanostructured Coatings on Plasma Spray Conditions,” Surf. Coat. Technol.130, pp. 1–8. [CrossRef]
Cao, X., Vassen, R., Fischer, W., Tietz, F., Jungen, W., and Stover, D., 2003, “Lanthanum–Cerium Oxide as a Thermal Barrier Coating for High Temperature Applications,” Adv. Mater., 15(17), pp. 1438–1442. [CrossRef]
Evans, A. G., Mumm, D. R., Hutchinson, J. W., Meier, G. H., and Pettit, F. S., 2001, “Mechanisms Controlling the Durability of Thermal Barrier Coatings,” Prog. Mater. Sci., 46, pp. 505–553. [CrossRef]
Zhu, Z., He, L., Chen, X., Zhao, Y., Mu, R., He, S., and Cao, X., 2010, “Thermal Cycling Behavior of La2Zr2O7 Coating With the Addition of Y2O3 by EB-PVD,” J. Alloys Compd., 508, pp. 85–93. [CrossRef]
Liu, Z.-G., Ouyang, J.-H., Wang, B.-H., Jhou, Y., and Li, J., 2008, “Preparation and Thermo-Physical Properties of NdxZr1xO2x/2 (x = 0.1, 0.2, 0.3, 0.4, 0.5) Ceramics,” J. Alloys Compd., 466, pp. 39–44. [CrossRef]
Ma, W., Mack, D., Malzbender, J., Vaben, R., and Stover, D., 2008, “Yb2O3 and Gd2O3 Doped Strontium Zirconate for Thermal Barrier Coatings,” J. Eur. Ceram. Soc., 28, pp. 3071–3081. [CrossRef]
Saruthan, B., Francois, P., Fritcher, K., and Schulz, U., 2004, “EB-PVD Processing of Pyrochlore-Structured La2Zr2O7-Based TBCs,” Surf. Coat. Technol., 182, pp. 175–183. [CrossRef]
Zhang, J., and Desai, V., 2005, “Determining Thermal Conductivity of Plasma Sprayed TBC by Electrochemical Impedance Spectroscopy,” Surf. Coat. Technol., 190(1), pp. 90–97. [CrossRef]
Dubourdieu, C., Rauwel, E., Roussel, H., Ducroquet, F., Holländer, B., Rossell, M., Tendeloo, G. V., Lhostis, S., and Rushworth, S., 2009, “Addition of Yttrium Into HfO2 Films: Microstructure and Electrical Properties,” J. Vac. Sci. Technol. A, 27(3), pp. 503–514. [CrossRef]
Lee, C.-K., Cho, E., Lee, H.-S., Hwang, C. S., and Han, S., 2008, “First-Principles Study on Doping and Phase Stability of HfO2,” Phys. Rev. B, 78, p. 012102. [CrossRef]
Rauwel, E., Dubourdieu, C., Holländer, B., Rochat, N., Ducroquet, F., Rossell, M. D., Tendeloo, G. V., and Pelissier, B., 2006, “Stabilization of the Cubic Phase of HfO2 by Y Addition in Films Grown by Metal Organic Chemical Vapor Deposition,” Appl. Phys. Lett., 89, p. 012902. [CrossRef]
Rosencwaig, A., and Gersho, A., 1976, “Theory of the Photoacoustic Effect With Solids,” J. Appl. Phys., 47(1), pp. 64–69. [CrossRef]
Wang, X., Hu, H., and Xu, X., 2001, “Photo-Acoustic Measurement of Thermal Conductivity of Thin Films and Bulk Materials,” ASME J. Heat Transfer, 123, pp. 138–144. [CrossRef]
Noor-A-Alam, M., and Ramana, C. V., 2012, “Structure and Thermal Conductivity of Yttria-Stabilized Hafnia Ceramic Coatings Grown on Nickel-Based Alloy,” Ceram. Int., 38, pp. 2957–2961. [CrossRef]
Terki, R., Bertrand, G., Aourag, H., and Coddet, C., 2008, “Cubic-to-Tetragonal Phase Transition of HfO2 From Computational Study,” Mater. Lett., 62(10–11), pp. 1484–1486. [CrossRef]
Winter, M. R., and Clarke, D. R., 2006, “Thermal Conductivity of Yttria-Stabilized Zirconia–Hafnia Solid Solutions,” Acta Mater., 54, pp. 5051–5059. [CrossRef]
Matsumoto, K., Itoh, Y., and Ishiwata, Y., 2003, “Thermal Conductivity and Sintering Behavior of Hafnia-Based Thermal Barrier Coating Using EB-PVD,” International Gas Turbine Congress (IGTC) Proceedings, Tokyo, Japan, Nov. 2–7, p. 131.
Kalidindi, N. R., Manciu, F. S., and Ramana, C. V., 2011, “Crystal Structure, Phase, and Electrical Conductivity of Nanocrystalline W0.95Ti0.05O3 Thin Films,” ACS Appl. Mater. Interfaces, 3, pp. 863–868. [CrossRef] [PubMed]
Mudavakkat, V. H., Noor-A-Alam, M., Bharathi, K. K., AlFiafy, S., Dissanayeke, K., Kayani, A., and Ramana, C. V., 2011, “Structure and AC Conductivity of Nanocrystalline Yttrium Oxide Thin Films,” Thin Solid Films, 519, pp. 7947–7950. [CrossRef]
Bharathi, K. K., Vemuri, R. S., Noor-A-Alam, M., and Ramana, C. V., 2012, “Effect of Annealing on the Microstructure of NiFe1.925Dy0.075O4 Thin Films,” Thin Solid Films, 520, pp. 1794–1798. [CrossRef]
Gullapalli, S. K., Vemuri, R. S., Manciu, F. S., Enriquez, J. L., and Ramana, C. V., 2010, “Tungsten Oxide (WO3) Thin Films for Application in Advanced Energy Systems,” J. Vac. Sci. Technol. A, 28(4), pp. 824–828. [CrossRef]
Ramana, C. V., Noor-A-Alam, M., Gengler, J. J., and Jones, J. G., 2012, “Growth, Structure, and Thermal Conductivity of Yttria-Stabilized Hafnia Thin Films,” ACS Appl. Mater. Interfaces, 4, pp. 200–204. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

XRD patterns of YSH coatings on SS-403 substrates

Grahic Jump Location
Fig. 2

SEM images of YSH coatings grown on SS-403 substrates

Grahic Jump Location
Fig. 3

SEM image of the Si-YSH interface grown at 500 °C

Grahic Jump Location
Fig. 4

Grain size of YSH on SS-403 as a function of growth temperature

Grahic Jump Location
Fig. 5

EDS spectrum of YSH coatings grown at 500 °C showing the composition in the coating (top panel). The EDS spectrum of the bare SS-403 substrate is also shown for comparison (bottom panel).

Grahic Jump Location
Fig. 6

Phase shift with respect to modulation frequency for YSH on SS-403 grown at RT (a), 300 °C (b), and 500 °C (c)

Grahic Jump Location
Fig. 7

Variation of thermal conductivity of YSH on SS-403 with growth temperature



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In