Research Papers

Fabrication and Characterization of Zinc Oxide-Based Electrospun Nanofibers for Mechanical Energy Harvesting

[+] Author and Article Information
Suyitno Suyitno

Department of Mechanical Engineering,
Sebelas Maret University,
Jl. Ir. Sutami 36 A, Surakarta 57126, Indonesia
e-mails: suyitno@uns.ac.id;

Agus Purwanto

Department of Chemical Engineering,
Sebelas Maret University,
Jl. Ir. Sutami 36 A, Surakarta 57126, Indonesia
e-mail: aguspur@yahoo.com

R. Lullus Lambang G. Hidayat

Department of Mechanical Engineering,
Sebelas Maret University,
Jl. Ir. Sutami 36 A, Surakarta 57126, Indonesia
e-mail: lulus_l@yahoo.com

Imam Sholahudin

Postgraduate Program in Mechanical Engineering,
Sebelas Maret University,
Jl. Ir. Sutami 36 A, Surakarta 57126, Indonesia
e-mail: slatem25@gmail.com

Mirza Yusuf

Postgraduate Program in Mechanical Engineering,
Sebelas Maret University,
Jl. Ir. Sutami 36 A, Surakarta 57126, Indonesia
e-mail: langkahsiguci@gmail.com

Sholiehul Huda

Department of Mechanical Engineering,
Sebelas Maret University
Jl. Ir. Sutami 36 A, Surakarta 57126, Indonesia
e-mail: sholiehulhuda@gmail.com

Zainal Arifin

Department of Mechanical Engineering,
Sebelas Maret University,
Jl. Ir. Sutami 36 A, Surakarta 57126, Indonesia
e-mails: zainal_a@uns.ac.id; zainal_mp@yahoo.co.id

Manuscript received September 24, 2013; final manuscript received April 12, 2014; published online May 2, 2014. Assoc. Editor: Roger Narayan.

J. Nanotechnol. Eng. Med 5(1), 011002 (May 02, 2014) (6 pages) Paper No: NANO-13-1068; doi: 10.1115/1.4027447 History: Received September 24, 2013; Revised April 12, 2014

Doped and undoped zinc oxide fibers were fabricated by electrospinning at various solution flow rates of 2, 4, and 6 μl/min followed by sintering at 550 °C. The nanogenerators (NGs) fabricated from the fibers were examined for their performance by applying loads (0.25–1.5 kg) representing fingers taps on the keyboard. A higher solution flow rate resulted in a larger fiber diameter, thus reducing nanogenerator voltage. The maximum power density for undoped zinc oxide-based and doped zinc oxide-based nanogenerators was 17.6 and 51.7 nW/cm2, respectively, under a load of 1.25 kg. Enhancing nanogenerator stability is a topic that should be investigated further.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Meng, X., Yang, C., Chen, Q., and Yang, J., 2013, “Influence of the PZT Film Thickness on the Structure and Electrical Properties of the ZnO/PZT Heterostructure,” J. Mater. Sci.: Mater. Electron., 24(1), pp. 160–165. [CrossRef]
Chen, X., Xu, S., Yao, N., and Shi, Y., 2010, “1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers,” Nano Lett., 10(6), pp. 2133–2137. [CrossRef] [PubMed]
Ramam, K. V. S., Murthy, K. V. R., Trinath, K., and Bhanumathi, A., 1995, “Piezoelectric Properties, Hysteresis Behaviour and Dielectric Properties of PMN-PZT Ceramics,” Bull. Mater. Sci., 18(5), pp. 587–592. [CrossRef]
Park, K. I., Xu, S., Liu, Y., Hwang, G. T., Kang, S. J. L., Wang, Z. L., and Lee, K. J., 2010, “Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates,” Nano Lett., 10(12), pp. 4939–4943. [CrossRef] [PubMed]
Terashi, Y., Purwanto, A., Wang, W. N., Iskandar, F., and Okuyama, K., 2008, “Role of Urea Addition in the Preparation of Tetragonal BaTiO3 Nanoparticles Using Flame-Assisted Spray Pyrolysis,” J. Eur. Ceram. Soc., 28(13), pp. 2570–2580. [CrossRef]
Lee, H., Cooper, R., Wang, K., and Liang, H., 2008, “Nano-Scale Characterization of a Piezoelectric Polymer (Polyvinylidene Difluoride, PVDF),” Sensors, 8(11), pp. 7359–7368. [CrossRef]
Indolia, A. P., and Gaur, M. S., 2012, “Investigation of Structural and Thermal Characteristics of PVDF/ZnO Nanocomposites,” J. Therm. Anal. Calorim., 113(2), pp. 821–830. [CrossRef]
Parija, B., Badapanda, T., Senthil, V., Rout, S. K., and Panigrahi, S., 2012, “Diffuse Phase Transition, Piezoelectric and Optical Study of Bi0·5Na0·5TiO3 Ceramic,” Bull. Mater. Sci., 35(2), pp. 197–202. [CrossRef]
Zhao, M. H., Wang, Z. L., and Mao, S. X., 2004, “Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope,” Nano Lett., 4(4), pp. 587–590. [CrossRef]
Chang, W. Y., Fang, T. H., Iweng, C., and Yang, S. S., 2011, “Flexible Piezoelectric Harvesting Based on Epitaxial Growth of ZnO,” Appl. Phys. A: Mater. Sci. Process., 102(3), pp. 705–711. [CrossRef]
Gopal, P., and Spaldin, N. A., 2006, “Polarization, Piezoelectric Constants, and Elastic Constants of ZnO, MgO, and CdO,” J. Electron. Mater., 35(4), pp. 538–542. [CrossRef]
Kim, Y. H., Baek, N. S., Kim, K. H., and Jung, S.-D., 2012, “Simplifying Patterning Process of ZnO Nanowires by One Step Development and Etching Process,” J. Sol-Gel Sci. Technol., 64(2), pp. 304–308. [CrossRef]
Lee, S. H., Lee, S. S., Choi, J. J., Jeon, J. U., and Ro, K., 2005, “Fabrication of a ZnO Piezoelectric Micro Cantilever With a High-Aspect-Ratio Nano Tip,” Microsyst. Technol., 11(6), pp. 416–423. [CrossRef]
Momeni, K., Asthana, A., Prasad, A., Yap, Y. K., and Shahbazian-Yassar, R., 2012, “Structural Inhomogeneity and Piezoelectric Enhancement in ZnO Nanobelts,” Appl. Phys. A: Mater. Sci. Process., 109(1), pp. 95–100. [CrossRef]
Pan, M. C., Wu, T. H., Bui, T. A., and Shih, W. C., 2012, “Fabrication of Highly C-Axis Textured ZnO Thin Films Piezoelectric Transducers by RF Sputtering,” J. Mater. Sci.: Mater. Electron., 23(2), pp. 418–424. [CrossRef]
Park, J. A., Moon, J., Lee, S. J., Lim, S. C., and Zyung, T., 2009, “Fabrication and Characterization of ZnO Nanofibers by Electrospinning,” Curr. Appl. Phys., 9(3), pp. S210–S212. [CrossRef]
Ren, H., Ding, Y., Jiang, Y., Xu, F., Long, Z., and Zhang, P., 2009, “Synthesis and Properties of ZnO Nanofibers Prepared by Electrospinning,” J. Sol-Gel Sci. Technol., 52(2), pp. 287–290. [CrossRef]
Shen, X., Sun, J., Zhu, G., Ji, Z., Chen, Z., and Li, N., 2013, “Morphological Syntheses of ZnO Nanostructures Under Microwave Irradiation,” J. Mater. Sci., 48(6), pp. 2358–2364. [CrossRef]
Wang, Z. L., 2007, “Novel Nanostructures of ZnO for Nanoscale Photonics, Optoelectronics, Piezoelectricity, and Sensing,” Appl. Phys. A: Mater. Sci. Process., 88(1), pp. 7–15. [CrossRef]
Yang, X., Shao, C., Guan, H., Li, X., and Gong, J., 2004, “Preparation and Characterization of ZnO Nanofibers by Using Electrospun PVA/Zinc Acetate Composite Fiber as Precursor,” Inorg. Chem. Commun., 7(2), pp. 176–178. [CrossRef]
Haertling, G. H., 1999, “Ferroelectric Ceramics: History and Technology,” J. Am. Ceram. Soc., 82(4), pp. 797–818. [CrossRef]
Uchino, K., 2003, “Introduction to Piezoelectric Actuators and Transducers,” International Center for Actuators and Transducers, Pennsylvania State University, Technical Report No. 0704-0188.
Devan, R. S., Patil, R. A., Lin, J. H., and Ma, Y. R., 2012, “One-Dimensional Metal-Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications,” Adv. Funct. Mater., 22(16), pp. 3326–337. [CrossRef]
Jin, D., and Meng, Z., 2003, “Functionally Graded PZT/ZnO Piezoelectric Composites,” J. Mater. Sci. Lett., 22(13), pp. 971–974. [CrossRef]
Lin, R. C., Chen, Y. C., and Kao, K. S., 2007, “Two-Step Sputtered ZnO Piezoelectric Films for Film Bulk Acoustic Resonators,” Appl. Phys. A: Mater. Sci. Process., 89(2), pp. 475–479. [CrossRef]
Wang, M. R., Wang, J., Chen, W., and Wang, L. D., 2005, “Influence of Li+ Dopants on the Properties of the ZnO Piezoelectric Films,” J. Mater. Sci., 40(19), pp. 5281–5284. [CrossRef]
Hsu, H. L., Yang, C. B., Huang, C. H., and Hsu, C. Y., 2013, “Electrical and Optical Studies of Ga-Doped ZnO Thin Films,” J. Mater. Sci.: Mater. Electron., 24(1), pp. 13–19. [CrossRef]
Wang, C., Xu, D., Xiao, X., Zhang, Y., and Zhang, D., 2007, “Effects of Oxygen Pressure on the Structure and Photoluminescence of ZnO Thin Films,” J. Mater. Sci., 42(23), pp. 9795–9800. [CrossRef]
Murali, K. V., Ragina, A. J., Preetha, K. C., Deepa, K., and Remadevi, T. L., 2013, “Influence of Ammonia, Lithium Hydroxide, and Hexamine on ZnO Films Synthesized by Successive Ionic Layer Adsorption and Reaction Technique,” J. Mater. Sci., 48(4), pp. 1852–1861. [CrossRef]
Momeni, K., Odegard, G. M., and Yassar, R. S., 2010, “Nanocomposite Electrical Generator Based on Piezoelectric Zinc Oxide Nanowires,” J. Appl. Phys., 108(11), p. 114303. [CrossRef]
Dong, Z., Kennedy, S. J., and Wu, Y., 2011, “Electrospinning Materials for Energy-Related Applications and Devices,” J. Power Sources, 196(11), pp. 4886–4904. [CrossRef]
Reneker, D. H., and Yarin, A. L., 2008, “Electrospinning Jets and Polymer Nanofibers,” Polymer, 49(10), pp. 2387–2425. [CrossRef]
Teo, W. E., Inai, R., and Ramakrishna, S., 2011, “Technological Advances in Electrospinning of Nanofibers,” Sci. Technol. Adv. Mater., 12(1), p. 013002. [CrossRef]
Heikkila, P., Hirvikorpi, T., Hilden, H., Sievanen, J., Hyvarinen, L., Harlin, A., and Vaha-Nissi, M., 2012, “High Surface Area Nanostructured Tubes Prepared by Dissolution of ALD-Coated Electrospun Fibers,” J. Mater. Sci., 47(8), pp. 3607–3612. [CrossRef]
Li, C., Lv, J., and Liang, Z., 2012, “Effects of Al Doping on the Optical and Electrical Properties of Pre-Synthesized ZnO Powders by Solid State Method,” J. Mater. Sci.: Mater. Electron., 23(9), pp. 1673–1677. [CrossRef]
Yuan, X., Zhang, Y., Dong, C., and Sheng, J., 2004, “Morphology of Ultrafine Polysulfone Fibers Prepared by Electrospinning,” Polym. Int., 53(11), pp. 1704–1710. [CrossRef]
Lee, D. Y., Kim, B. Y., Lee, S. J., Lee, M. H., Song, Y. S., and Lee, J. Y., 2006, “Titania Nanofibers Prepared by Electrospinning,” J. Korean Phys. Soc., 48(6), pp. 1686–1690.
Pham, Q. P., Sharma, U., and Mikos, A. G., 2006, “Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review,” Tissue Eng., 12(5), pp. 1197–1211. [CrossRef] [PubMed]
Ramakrishna, S., Fujihara, K., Teo, W. E., Lim, T. C., and Ma, Z., 2005, An Introduction to Electrospinning and Nanofibers, World Scientific, Singapore.
Li, Z., and Wang, C., 2013, One-Dimensional Nanostructures Electrospinning Technique and Unique Nanofibers, Springer, New York.
Baek, J. H., Park, J., Kang, J., Kim, D., Koh, S. W., and Kang, Y. C., 2012, “Fabrication and Thermal Oxidation of ZnO Nanofibers Prepared Via Electrospinning Technique,” Bull. Korean Chem., 33(8), pp. 2694–2698. [CrossRef]
Wang, D. W., Cao, M. S., Yuan, J., Zhao, Q. L., Li, H. B., Lin, H. B., and Zhang, D. Q., 2011, “Piezoelectric, Ferroelectric and Mechanical Properties of Lead Zirconate Titanate/Zinc Oxide Nanowhisker Ceramics,” J. Mater. Sci.: Mater. Electron., 22(9), pp. 1393–1399. [CrossRef]
Salem, J. K., Hammad, T. M., and Harrison, R. R., 2012, “Synthesis, Structural and Optical Properties of Ni-Doped ZnO Micro-Spheres,” J. Mater. Sci.: Mater. Electron., 24(5), pp. 1670–1676. [CrossRef]
Rutledge, G. C., Li, Y., Fridrikh, S., Warner, S. B., Kalayci, V. E., and Patra, P., 2000, “Electrostatic Spinning and Properties of Ultrafine Fibers,” National Textile Center, Technical Report, No. M98-D01.
Bahadur, H., Samanta, S. B., Srivastava, A. K., Sood, K. N., Kishore, R., Sharma, R. K., Basu, A., Rashmi, Kar, M., Pal, P., Bhatt, V., and Chandra, S., 2006, “Nano and Micro Structural Studies of Thin Films of ZnO,” J. Mater. Sci., 41(22), pp. 7562–7570. [CrossRef]
Loh, K. J., and Chang, D., 2011, “Zinc Oxide Nanoparticle-Polymeric Thin Films for Dynamic Strain Sensing,” J. Mater. Sci., 46(1), pp. 228–237. [CrossRef]
Chang, J., Dommer, M., Chang, C., and Lin, L., 2012, “Piezoelectric Nanofibers for Energy Scavenging Applications,” Nano Energy, 1(3), pp. 356–371. [CrossRef]
Dicken, J., Mitcheson, P. D., Stoianov, I., and Yeatman, E. M., 2009, “Increased Power Output From Piezoelectric Energy Harvesters by Pre-Biasing,” PowerMEMS 2009, Washington, DC, Dec. 1–4, pp. 75–78.


Grahic Jump Location
Fig. 1

A nanofiber-based NG

Grahic Jump Location
Fig. 2

Equipment for measuring the performance of undoped ZnO-based and doped ZnO-based NGs

Grahic Jump Location
Fig. 3

SEM images of undoped ZnO and doped ZnO nanofibers

Grahic Jump Location
Fig. 4

XRD patterns for (a) doped ZnO and (b) undoped ZnO nanofibers

Grahic Jump Location
Fig. 5

Output voltage of (a) undoped ZnO-based and (b) doped ZnO-based NGs obtained by gradually changing the amount of external resistance

Grahic Jump Location
Fig. 6

Average output power from (a) undoped ZnO-based NGs and (b) doped ZnO-based NGs

Grahic Jump Location
Fig. 7

SEM image of fibers after being subjected to a load of (a) 0.5 kg for 12,000 cycles and (b) 1.5 kg for 12,000 cycles



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In