Review Article

Differential Mobility Particle Sizers for Nanoparticle Characterization

[+] Author and Article Information
Jingjie Zhang

Department of Mechanical
and Nuclear Engineering,
Virginia Commonwealth University,
401 W Main Street,
Richmond, VA 23284
e-mail: jzhang4@vcu.edu

Daren Chen

Department of Mechanical
and Nuclear Engineering,
Virginia Commonwealth University,
401 W Main Street,
Richmond, VA 23284
e-mail: dchen3@vcu.edu

1Corresponding author.

Manuscript received April 5, 2014; final manuscript received July 14, 2014; published online August 19, 2014. Assoc. Editor: Hsiao-Ying Shadow Huang.

J. Nanotechnol. Eng. Med 5(2), 020801 (Aug 19, 2014) (9 pages) Paper No: NANO-14-1030; doi: 10.1115/1.4028040 History: Received April 05, 2014; Revised July 14, 2014

Differential mobility particle sizers (DMPSs) are instruments for online sizing gas-borne particles in submicrometer and nanometer diameter ranges. The aerosol charger, the differential mobility analyzer (DMA), and the particle concentration detector are three essential components in DMPSs. In the past four decades, the design of DMAs has evolved into a variety of modern versions to extend their sizing limits, especially in lower detectable size limits. The DMAs are now capable of classifying or sizing particles in the diameters down to 1.0 nm. This article gives a brief overview of state-of-the-art DMAs particularly designed for classifying particles with sizes down to sub-10 nm.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Pui, D. Y. H., and Chen, D.-R., 1997, “Guest Editorial—Nanometer Particles: A New Frontier for Multidisciplinary Research,” J. Aerosol Sci., 28(4), pp. 539–555. [CrossRef]
Kim, B. H., Hackett, M. J., Park, J., and Hyeon, T., 2014, “Synthesis, Characterization, and Application of Ultrasmall Nanoparticles,” Chem. Mater., 26(1), pp. 59–71. [CrossRef]
Cheng, Y., Morshed, R. A., Auffinger, B., Tobias, A. L., and Lesniak, M. S., 2014, “Multifunctional Nanoparticles for Brain Tumors Imaging and Therapy,” Adv. Drug Del. Rev., 66, pp. 42–57. [CrossRef]
Guo, D., Xie, G., and Luo, J., 2014, “Mechanical Properties of Nanoparticles: Basics and Applications,” J. Phys. D: Appl. Phys., 47(1), p. 013001. [CrossRef]
Madl, A. K., Plummer, L. E., Carosino, C., and Pinkerton, K. E., 2014, “Nanoparticles, Lung Injury, and the Role of Oxidant Stress,” Annu. Rev. Physiol., 76, pp. 447–465. [CrossRef] [PubMed]
Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., and Wiesner, M. R., 2009, “Towards a Definition of Inorganic Nanoparticles From an Environmental, Health and Safety Perspective,” Nat. Nanotechnol., 4, pp. 634–641. [CrossRef] [PubMed]
Wang, S. C., and Flagan, R. C., 1990, “Scanning Electrical Mobility Spectrometer,” Aerosol Sci. Technol., 13(2), pp. 230–240. [CrossRef]
Chen, D.-R., and Pui, D. Y. H., 1999, “A High Efficiency, High Throughput Unipolar Aerosol Charger for Nanoparticles,” J. Nanopart. Res., 1(1), pp. 115–126. [CrossRef]
Guha, S., Li, M., Tarlov, M. J., and Zachariah, M. R., 2012, “Electrospray–Differential Mobility Analysis of Bionanoparticles,” Trends Biotechnol., 30(5), pp. 291–300. [CrossRef] [PubMed]
Hogan, C. J., Jr., and Fernández de la Mora, J., 2009, “Tandem Ion Mobility-Mass Spectrometry (IMS-MS) Study of Ion Evaporation From Ionic Liquid-Acetonitrile Nanodrops,” Phys. Chem. Chem. Phys., 11, pp. 8079–8090. [CrossRef] [PubMed]
Fernández de la Mora, J., 2011, Ion Mobility Spectroscopy—Mass Spectrometry: Theory and Applications, Taylor and Francis, Oxford, UK, Chap. 5.
Park, K., Dutcher, D., Emery, M., Pagels, J., Sakurai, H., Scheckman, J., Qian, S., Stolzenburg, M. R., Wang, X., Yang, J., and McMurry, P. H., 2008, “Tandem Measurements of Aerosol Properties—A Review of Mobility Techniques With Extensions,” Aerosol Sci. Technol., 42(10), pp. 801–816. [CrossRef]
Flagan, R. C., 1998, “History of Electrical Aerosol Measurements,” Aerosol Sci. Technol., 28(4), pp. 301–380. [CrossRef]
Whitby, K. T., and Clark, W. E., 1966, “Electrical Aerosol Particle Counting and Size Distribution Measuring System for the 0.015 to 1 μ Size Range,” Tellus, 18(2–3), pp. 573–586. [CrossRef]
Liu, B. Y. H., Whitby, K. T., and Pui, D. Y. H., 1974, “A Portable Electrical Analyzer for Size Distribution Measurement of Submicron Aerosols,” APCAJ, 24(11), pp. 1067–1072. [CrossRef]
Liu, B. Y. H., and Pui, D. Y. H., 1974, “A Submicron Aerosol Standard and the Primary, Absolute Calibration of the Condensation Nucleus Counter,” J. Colloid Interface Sci., 47(1), pp. 155–171. [CrossRef]
Knutson, E. O., and Whitby, K. T., 1975, “Aerosol Classification by Electric Mobility: Apparatus, Theory, and Applications,” J. Aerosol Sci.6(6), pp. 443–451. [CrossRef]
Kousaka, Y., Okuyama, K., Adachi, M., and Mimura, T., 1986, “Effect of Brownian Diffusion on Electrical Classification of Ultrafine Aerosol Particles in Differential Mobility Analyzer,” J. Chem. Eng. Jpn., 19(5), pp. 401–407. [CrossRef]
Winklmayr, W., Reischl, G. P., Lindner, A. O., and Berner, A., 1991, “A New Electromobility Spectrometer for the Measurement of Aerosol Size Distributions in the Size Range From 1 to 1000 nm,” J. Aerosol Sci., 22(3), pp. 289–296. [CrossRef]
Reischl, G. P., Mäkelä, J. M., and Necid, J., 1997, “Performance of Vienna Type Differential Mobility Analyzer at 1.2–20 Nanometer,” Aerosol Sci. Technol., 27(6), pp. 651–672. [CrossRef]
Rosell-Llompart, J., Loscertales, I. G., Bingham, D., and Fernández de la Mora, J., 1996, “Sizing Nanoparticles and Ions With a Short Differential Mobility Analyzer,” J. Aerosol Sci., 27(5), pp. 695–719. [CrossRef]
Fissan, H., Hummes, D., Stratmann, F., Büscher, P., Neumann, S., Pui, D. Y. H., and Chen, D., 1996, “Experimental Comparison of Four Differential Mobility Analyzers for Nanometer Aerosol Measurements,” Aerosol Sci. Technol., 24(1), pp. 1–13. [CrossRef]
Chen, D., and Pui, D. Y. H., 1997, “Numerical Modeling of the Performance of Differential Mobility Analyzers for Nanometer Aerosol Measurements,” J. Aerosol Sci., 28(6), pp. 985–1004. [CrossRef]
Chen, D.-R., Pui, D. Y. H., Hummes, D., Fissan, H., Quant, F. R., and Sem, G. J., 1998, “Design and Evaluation of a Nanometer Aerosol Differential Mobility Analyzer (Nano-DMA),” J Aerosol Sci., 29(5–6), pp. 497–509. [CrossRef]
Pourprix, M., and Daval, J., 1990, “Electrostatic Precipitation of Aerosol on Wafers, a New Mobility Spectrometer,” Aerosols: Science, Industry, Health and Environment: Proceedings of the Third International Aerosol Conference, S.Masuda, and K.Takahashi, Eds., Kyoto, Japan, Sept. 24–27, Pergamon Press, New York. Vol. 2.
Pourprix, M., 1994, “Selecteur de Particules Chargees, a Haute Sensibilite,” Brevet Francais, France Patent No. EP0685725 A1.
Zhang, S.-H., Akutsu, Y., Russell, L. M., Flagan, R. C., and Seinfeld, J. H., 1995, “Radial Differential Mobility Analyzer,” Aerosol Sci. Technol., 23(3), pp. 357–372. [CrossRef]
Zhang, S.-H., and Flagan, R. C., 1996, “Resolution of the Radial Differential Mobility Analyzer for Ultrafine Particles,” J. Aerosol Sci., 27(8), pp. 1179–1200. [CrossRef]
Brunelli, N. A., Flagan, R. C., and Giapis, K. P., 2009, “Radial Differential Mobility Analyzer for One Nanometer Particle Classification,” Aerosol Sci. Technol., 43(1), pp. 53–59. [CrossRef]
De Juan, L., and Fernández de la Mora, J., 1998, “High Resolution Size Analysis of Nanoparticles and Ions: Running a Vienna DMA of Near Optimal Length at Reynolds Numbers up to 5000,” J. Aerosol Sci., 29(5–6), pp. 617–626. [CrossRef]
Martinez-Lozano, P., and Fernández de la Mora, J., 2006, “Experimental Tests of a Nano-DMA With no Voltage Change Between Aerosol Inlet and Outlet Slits,” J. Aerosol Sci., 37(11), pp. 1629–1642. [CrossRef]
Martinez-Lozano, P., and Labowsky, M., 2009, “An Experimental and Numerical Study of a Miniature High Resolution Isopotential DMA,” J. Aerosol Sci., 40(5), pp. 451–462. [CrossRef]
Fernández de la Mora, J., and Kozlowski, J., 2013, “Hand-Held Differential Mobility Analyzers of High Resolution for 1–30 nm Particles: Design and Fabrication Considerations,” J. Aerosol Sci., 57, pp. 45–53. [CrossRef]
Mei, F., Fu, H., and Chen, D.-R., 2011, “A Cost-Effective Differential Mobility Analyzer (cDMA) for Multiple DMA Column Applications,” J. Aerosol Sci., 42, pp. 462–473. [CrossRef]
Santos, J. P., Hontañón, E., Ramiro, E., and Alonso, M., 2009, “Performance Evaluation of a High-Resolution Parallel-Plate Differential Mobility Analyzer,” Atmos. Chem. Phys., 9, pp. 2419–2429. [CrossRef]
Hontañón, E., and Kruis, F. E., 2009, “A Differential Mobility Analyzer (DMA) for Size Selection of Nanoparticles at High Flow Rates,” Aerosol Sci. Technol., 43(1), pp. 25–37. [CrossRef]
Hontañón, E., Rouenhoff, M., Azabal, A., Ramiro, E., and Kruis, F. E., 2014, “Assessment of a Cylindrical and a Rectangular Plate Differential Mobility Analyzer for Size Fractionation of Nanoparticles at High-Aerosol Flow Rates,” Aerosol Sci. Technol., 48(3), pp. 333–339. [CrossRef]
Steer, B., Gorbunov, B., Muir, R., Ghimire, A., and Rowles, J., 2014, “Portable Planar DMA: Development and Tests,” Aerosol Sci. Technol., 48(3), pp. 251–260. [CrossRef]
Myojo, T., Ikawa, S., Sakae, H., and Kohyama, N., 2001, “A New Long DMA and Its Performance for Size-Measurement of 1 μm Polystyrene Latex Particles,” J. Air Clean. Contam. Control, 39, pp. 168–175 (in Japanese).
Myojo, T., Ehara, K., Koyama, H., and Okuyama, K., 2004, “Size Measurement of Polystyrene Latex Particles Larger Than 1 Micrometer Using a Long Differential Mobility Analyzer,” Aerosol Sci. Technol., 38(12), pp. 1178–1184. [CrossRef]
Uin, J., Tamm, E., and Mirme, A., 2011, “Very Long DMA for the Generation of the Calibration Aerosols in Particle Diameter Range up to 10 μm by Electrical Separation,” Aerosol Air Qual. Res., 11, pp. 531–538. [CrossRef]
Raddatz, M., Wiedensohler, A., Wex, H., and Stratmann, F., 2013, “Size Selection of Sub- and Super-Micron Clay Mineral Kaolinite Particles Using a Custom-Built Maxi-DMA,” Nucleation and Atmospheric Aerosols: 19th International Conference, AIP Conf. Proc., Fort Collins, CO, June 23–28, Vol 1527, pp. 457–460. [CrossRef]
Rosch, M., Pfeifer, S., Wiedensohler, A., and Stratmann, F., 2014, “Selection of Quasi-Monodisperse Super-Micron Aerosol Particles,” EGU General Assembly, Geophysical Research Abstracts, 16, Paper No. EGU2014-4957.
Intra, P., and Tippayawong, N., 2008, “An Overview of Differential Mobility Analyzers for Size Classification of Nanometer-Sized Aerosol Particles,” Songklanakarin J. Sci. Technol., 30(2), pp. 243–256.
Allen, M., and Raabe, O., 1985, “Slip Correction Measurements of Spherical Solid Aerosol Particles in an Improved Millikan Apparatus,” Aerosol Sci. Technol., 4(3), pp. 269–286. [CrossRef]
Flagan, R. C., 2011, Aerosol Measurement: Principles, Techniques, and Applications, 3rd ed., Wiley, Hoboken, NJ, Chap. 15.
Fernández de la Mora, J., 2011, Aerosol Measurements: Principles, Techniques, and Applications, 3rd ed. Wiley, Hoboken, NJ, Chap. 32.
Kousaka, Y., Okuyama, K., and Adachi, M., 1985, “Determination of the Size Distribution of Ultrafine Aerosol Particles Using a Differential Mobility Analyzer,” Aerosol Sci. Technol., 4(2), pp. 209–225. [CrossRef]
Stolzenburg, M. R., 1988, “An Ultrafine Aerosol Size Distribution Measuring System,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
Hagwood, C., 1999, “The DMA Transfer Function With Brownian Motion a Trajectory/Monte-Carlo Approach,” Aerosol Sci. Technol., 30(1), pp. 40–61. [CrossRef]
Mamakos, A., Ntziachristos, L., and Samaras, Z., 2007, “Diffusion Broadening of DMA Transfer Functions. Numerical Validation of Stolzenburg Model,” J. Aerosol Sci., 38(7), pp. 747–763. [CrossRef]
Flagan, R. C., 1999, “On Differential Mobility Analyzer Resolution,” Aerosol Sci. Technol., 30(6), pp. 556–570. [CrossRef]
Hewitt, G. W., 1957, “The Charging of Small Particles for Electrostatic Precipitation,” Am. Inst. Electr. Eng., 76, pp. 300–306. [CrossRef]
Jiang, J., Attoui, M., Heim, M., Brunelli, N. A., McMurry, P. H., Kasper, G., Flagan, R. C., Giapis, K., and Mouret, G., 2011, “Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification,” Aerosol Sci. Technol., 45(4), pp. 480–492. [CrossRef]
Rosser, S., and Fernández de la Mora., 2005, “Vienna-Type DMA of High Resolution and High Flow Rate,” Aerosol Sci. Technol., 39(12), pp. 1191–1200. [CrossRef]
Steiner, G., Attoui, M., Wimmer, D., and Reischl, G. P., 2010, “A Medium Flow, High-Resolution Vienna DMA Running in Recirculating Mode,” Aerosol Sci. Technol., 44(4), pp. 308–315. [CrossRef]
Mesbah, B., 1994, “Le spectrometer de mobilite electrique circulair; Performance et applications,” Theses de Doctorat a l'Universite Paris XII. 4 Juil., Creteil, France.
Brunelli, N. A., Neidholdt, E. L., Giapis, K. P., Flagan, R. C., and Beauchamp, J. L., 2013, “Continuous Flow Ion Mobility Separation With Mass Spectrometric Detection Using a Nano-Radial Differential Mobility Analyzer at Low Flow Rates,” Anal. Chem., 85(9), pp. 4335–4341. [CrossRef] [PubMed]
Mui, W., Thomas, D. A., Downard, A. J., Beauchamp, J. L., Seinfeld, J. H., and Flagan, R. C., 2013, “Ion Mobility-Mass Spectrometry With a Radial Opposed Migration Ion and Aerosol Classifier (ROMIAC),” Anal. Chem., 85(13), pp. 6319–6326. [CrossRef] [PubMed]
Loscertales, I. G., 1998, “Drift Differential Mobility Analyzer,” J. Aerosol Sci., 29(9), pp. 1117–1139. [CrossRef]
Flagan, R. C., 2004, “Opposed Migration Aerosol Classifier (OMAC),” Aerosol Sci. Technol., 38(9), pp. 890–899. [CrossRef]
Song, D. K., and Dhaniyala, S., 2007, “Nanoparticle Cross-Flow Differential Mobility Analyzer (NCDMA): Theory and Design,” J. Aerosol Sci., 38, pp. 964–979. [CrossRef]
Rockwood, A. L., Lee, E. D., Agbonkonkon, N., and Lee, M. L., 2007, “Cross-Flow Ion Mobility Analyzer,” U.S. Patent No. 7199362 B2.
Gillig, K. J., and Chen, C.-H., 2014, “Increasing the Performance of Portable Ion Mobility Analyzers: Development of the Periodic Focusing Differential Mobility Analyzer (PFDMA),” Mass Spectrom., 3(S0032), 1–5. [CrossRef]


Grahic Jump Location
Fig. 1

Fundamental configuration of a DMPS

Grahic Jump Location
Fig. 2

Principle of operation of the DMA

Grahic Jump Location
Fig. 3

Schematic diagram of (a) cylindrical DMA by Knutson and Whitby [17] and (b) RDMA

Grahic Jump Location
Fig. 4

Transfer function of the DMA (a) nondiffusion, ideal transfer function and (b) diffusion broadening of the ideal transfer function

Grahic Jump Location
Fig. 5

Schematic diagram of the TSI DMA (Model 3071)

Grahic Jump Location
Fig. 6

Schematic diagram of the Nano-DMA developed by Chen et al. [24]

Grahic Jump Location
Fig. 7

Schematic diagram of the Vienna type DMA developed by Reischl and coworkers [19]

Grahic Jump Location
Fig. 8

Schematic diagram of the Rosser DMA—a variant of the Vienna DMA [55]

Grahic Jump Location
Fig. 9

Schematic diagram of the Vienna type UDMA—a variant of the Vienna DMA [56]

Grahic Jump Location
Fig. 10

Schematic diagram of the Half-Mini DMA developed by Fernández de la Mora and Kozlowski [33]

Grahic Jump Location
Fig. 11

Illustration of the principle of the 2D drift DMA [60]

Grahic Jump Location
Fig. 12

Cross-sectional view of functional region of the ROMIAC [59]



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In