Research Papers

Morphology and Crystallographic Characterization of Nickel Nanowires—Influence of Magnetic Field and Current Density During Synthesis

[+] Author and Article Information
Mahendran Samykano

Department of Nanoengineering,
Joint School of Nanoscience
and Nanoengineering,
North Carolina A&T State University,
2907 East Lee Street,
Greensboro, NC 27401
e-mail: mahendran.samkano@gmail.com

Ram Mohan

Department of Nanoengineering,
Joint School of Nanoscience
and Nanoengineering,
North Carolina A&T State University,
2907 East Lee Street,
Greensboro, NC 27401
e-mail: rvmohan@ncat.edu

Shyam Aravamudhan

Department of Nanoengineering,
Joint School of Nanoscience
and Nanoengineering,
North Carolina A&T State University,
2907 East Lee Street,
Greensboro, NC 27401
e-mail: saravamu@ncat.edu

1Corresponding author.

Manuscript received April 25, 2014; final manuscript received July 14, 2014; published online August 19, 2014. Assoc. Editor: Hsiao-Ying Shadow Huang.

J. Nanotechnol. Eng. Med 5(2), 021005 (Aug 19, 2014) (7 pages) Paper No: NANO-14-1036; doi: 10.1115/1.4028026 History: Received April 25, 2014; Revised July 14, 2014

This paper presents results and discussion from a comprehensive morphological and crystallographic characterization of nickel nanowires synthesized by template-based electrodeposition method. In particular, the influence of magnetic and electric field (current density) conditions during the synthesis of nickel nanowires was studied. The structure and morphology of the synthesized nanowires were studied using Helium ion microscopy (HIM) and scanning electron microscopy (SEM) methods. The HIM provided higher quality data and resolution compared to conventional SEM imaging. The crystallographic properties of the grown nanowires were also studied using X-ray diffraction (XRD). The results clearly indicated that the morphological and crystallographic properties of synthesized nickel nanowires were strongly influenced by the applied magnetic field and current density intensity during the synthesis process.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Chen, J., Wiley, B. J., and Xia, Y., 2007, “One-Dimensional Nanostructures of Metals: Large-Scale Synthesis and Some Potential Applications,” Langmuir, 23(8), pp. 4120–4129. [CrossRef] [PubMed]
Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H., 2003, “One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater., 15(5), pp. 353–389. [CrossRef]
Li, W., Qiu, M. W., Hu, M., Liu, Z. C., Zhao, Z. L., Tao, Z., Chen, D. Y., and Jiang, Y., 2013, “Sub-100 nm Single Crystalline Periodic Nano Silicon Wire Obtained by Modified Nanoimprint Lithography,” Nanosci. Nanotechnol. Lett., 5(7), pp. 737–740. [CrossRef]
Wu, S. E., Huang, Y. W., Hsueh, T. H., and Liu, C. P., 2008, “Fabrication of Nanopillars Comprised of InGaN/GaN Multiple Quantum Wells by Focused Ion Beam Milling,” Jpn. J. Appl. Phys., Part 1, 47(6), pp. 4906–4908. [CrossRef]
Ji, Y., Zhang, X. B., Zhu, Y. J., Li, B., Wang, Y., Zhang, J. C., and Feng, Y., 2013, “Nickel Nanofibers Synthesized by the Electrospinning Method,” Mater. Res. Bull., 48(7), pp. 2426–2429. [CrossRef]
Walter, E. C., Murray, B. J., Favier, F., Kaltenpoth, G., Grunce, M., and Penner, R. M., 2002, “Noble and Coinage Metal Nanowires by Electrochemical Step Edge Decoration,” J. Phys. Chem. B, 106(44), pp. 11407–11411. [CrossRef]
Huczko, A., 2000, “Template-Based Synthesis of Nanomaterials,” Appl. Phys. A, 70(4), pp. 365–376. [CrossRef]
Martin, C. R., 1996, “Membrane-Based Synthesis of Nanomaterials,” Chem. Mater., 8(8), pp. 1739–1746. [CrossRef]
Murphy, C. J., and Jana, N. R., 2002, “Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires,” Adv. Mater., 14(1), pp. 80–82. [CrossRef]
Sun, Y. G., 2010, “Silver Nanowires-Unique Templates for Functional Nanostructures,” Nanoscale, 2(9), pp. 1626–1642. [CrossRef] [PubMed]
Alkire, R. C., Gogotsi, Y., Simon, P., and Eftekhari, A., 2008, Nanostructured Materials in Electrochemistry, Wiley-VCH, Weinheim, Germany.
Tonucci, R. J., Justus, B. L., Campillo, A. J., and Ford, C. E., 1992, “Nanochannel Array Glass,” Science, 258(5083), pp. 783–785. [CrossRef] [PubMed]
Chakravorty, D., Basu, S., Pal, B. N., Mukherjee, P. K., Ghosh, B., Chatterjee, K., Bose, A., Bhattacharya, S., and Banerjee, A., 2008, “Synthesis of Nanocomposites Using Glasses and Mica as Templates,” Bull. Mater. Sci., 31(3), pp. 263–276. [CrossRef]
Hillhouse, H. W., Van Egmond, J. W., Tsapatsis, M., Hanson, J. C., and Larese, J. Z., 2000, “Synthesis and Characterization of Ordered Arrays of Topological Defects in Mesoporous Silica Films,” Chem. Mater., 12(10), pp. 2888–2893. [CrossRef]
Liu, G. J., 2000, “Nanostructures of Functional Block Copolymers,” Chin. J. Polym. Sci., 18(3), pp. 255–262. [CrossRef]
Mohanty, U. S., 2011, “Electrodeposition: A Versatile and Inexpensive Tool for the Synthesis of Nanoparticles, Nanorods, Nanowires, and Nanoclusters of Metals,” J. Appl. Electrochem., 41(3), pp. 257–270. [CrossRef]
Wang, Z. Y., Shi, L. Y., Wu, F. Q., Yuan, S. A., Zhao, Y., and Zhang, M. H., 2011, “The Sol-Gel Template Synthesis of Porous TiO2 for a High Performance Humidity Sensor,” Nanotechnology, 22(27), p. 275502. [CrossRef] [PubMed]
Li, X. D., Meng, G. W., Xu, Q. L., Kong, M. G., Zhu, X. G., Chu, Z. Q., and Li, A. P., 2011, “Controlled Synthesis of Germanium Nanowires and Nanotubes With Variable Morphologies and Sizes,” Nano Lett., 11(4), pp. 1704–1709. [CrossRef] [PubMed]
Phillips, F. R., Fang, D., Zheng, H. X., and Lagoudas, D. C., 2011, “Phase Transformation in Free-Standing SMA Nanowires,” Acta Mater., 59(5), pp. 1871–1880. [CrossRef]
Cortes, A., Riveros, G., Palma, J. L., Denardin, J. C., Marotti, R. E., Dalchiele, E. A., and Gomez, H., 2009, “Single-Crystal Growth of Nickel Nanowires: Influence of Deposition Conditions on Structural and Magnetic Properties,” J. Nanosci. Nanotechnol., 9(3), pp. 1992–2000. [CrossRef] [PubMed]
Aravamudhan, S., Singleton, J., Goddard, P. A., and Bhansali, S., 2009, “Magnetic Properties of Ni-Fe Nanowire Arrays: Effect of Template Material and Deposition Conditions,” J. Phys. D, 42(11), p. 115008. [CrossRef]
Gong, C. H., Yu, L. G., Duan, Y. P., Tian, J. T., Wu, Z. S., and Zhang, Z. J., 2008, “The Fabrication and Magnetic Properties of Ni Fibers Synthesized Under External Magnetic Fields,” Eur. J. Inorg. Chem., 2008(18), pp. 2884–2891. [CrossRef]
Napolskii, K. S., Eliseev, A. A., Yesin, N. V., Lukashin, A. V., Tretyakov, Y. D., Grigorieva, N. A., Grigoriev, S. V., and Eckerlebe, H., 2007, “Ordered Arrays of Ni Magnetic Nanowires: Synthesis and Investigation,” Physica E, 37(1–2), pp. 178–183. [CrossRef]
Razeeb, K. M., Rhen, F. M. F., and Roy, S., 2009, “Magnetic Properties of Nickel Nanowires: Effect of Deposition Temperature,” J. Appl. Phys., 105(8), p. 083922. [CrossRef]
Siah, C. H., Aziz, N., Samad, Z., Idris, M. N., and Miskam, M. A., 2002, “A Review of the Fundamentals Studies for the Electroplating Process,” University Sains Malaysia, Pulau Pinang, Malaysia.
Tabakovic, I., Riemer, S., Vas'ko, V., Sapozhnikov, V., and Kief, M., 2003, “Effect of Magnetic Field on Electrode Reactions and Properties of Electrodeposited NiFe Films,” J. Electrochem. Soc., 150(9), pp. C635–C640. [CrossRef]
Ispas, A., and Bund, A., 2011, “Influence of a Magnetic Field on the Electrodeposition of Nickel and Nickel-Iron Alloys,” 15th RIGA and 6th PAMIR Conference on Fundamental and Applied MHD, Jurmala, Latvia, June 27–July 1, pp. 135–138.
Morgan, J., Notte, J., Hill, R., and Ward, B., 2006, “An Introduction to the Helium Ion Microscope,” Microsc. Today, 14(4), pp. 24–31.
Ward, B. W., Notte, J. A., and Economou, N. P., 2006, “Helium Ion Microscope: A New Tool for Nanoscale Microscopy and Metrology,” J. Vac. Sci. Technol., B, 24(6), pp. 2871–2874. [CrossRef]
Rabia, J., Tajamal, H., Saliha, S., and Shahid, A. M., “Magnetic Field Effects on the Microstructural Variation of Electrodeposited Nickel Film,” J. Mater. Sci. Eng. A, 1(4), pp. 481–487.
Coey, J. M. D., and Hinds, G., 2001, “Magnetic Electrodeposition,” J. Alloys Compd., 326(1), pp. 238–245. [CrossRef]
Smilgies, D. M., 2009, “Scherrer Grain-Size Analysis Adapted to Grazing-Incidence Scattering With Area Detectors,” J. Appl. Crystallogr., 42(6), pp. 1030–1034. [CrossRef] [PubMed]
Khan, H. R., and Petrikowski, K., 2001, “Magnetic Field Effects on Electrodeposition of Cobalt Film and Nanowires,” Mater. Sci. Forum, 373, pp. 725–728. [CrossRef]


Grahic Jump Location
Fig. 1

Processing flow for template-based synthesis

Grahic Jump Location
Fig. 2

HIM (left) and SEM (right) images of nanowires grown at current density 5 mA·cm−2 and external magnetic field of, (a) and (b) 0G, (c) and (d) 3817G, and (e) and (f) 5756G

Grahic Jump Location
Fig. 3

HIM (left) and SEM (right) images nanowires grown at current density 11 mA·cm−2 and external magnetic field of, (a) and (b) 0G, (c) and (d) 3817G, and (e) and (f) 5756G

Grahic Jump Location
Fig. 4

Cross section of AAO template

Grahic Jump Location
Fig. 5

XRD pattern of the Ni nanowires deposited in alumina membranes at various magnetic field and current density, (a) 5 mA·cm−2 and (b) 11 mA·cm−2 (in both Figs. 5(a) and 5(b)), solid line indicates for 0G, dashed line indicates for 3817G and dotted line for 5756G magnetic field



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In