Research Papers

The Application of Micropipette Aspiration in Molecular Mechanics of Single Cells

[+] Author and Article Information
Lap Man Lee

Department of Mechanical Engineering,
University of Michigan,
2350 Hayward Street,
Ann Arbor, MI 48109-2125
e-mail: melmlee@umich.edu

Allen P. Liu

Department of Mechanical Engineering,
Biomedical Engineering, Cell and
Molecular Biology Program,
Biophysics Program,
University of Michigan,
2350 Hayward Street,
Ann Arbor, MI 48109-2125
e-mail: allenliu@umich.edu

1Corresponding author.

Manuscript received January 23, 2015; final manuscript received February 24, 2015; published online June 16, 2015. Assoc. Editor: Jianping Fu.

J. Nanotechnol. Eng. Med 5(4), 040902 (Nov 01, 2014) (6 pages) Paper No: NANO-15-1010; doi: 10.1115/1.4029936 History: Received January 23, 2015; Revised February 24, 2015; Online June 16, 2015

Micropipette aspiration is arguably the most classical technique in mechanical measurements and manipulations of single cells. Despite its simplicity, micropipette aspiration has been applied to a variety of experimental systems that span different length scales to study cell mechanics, nanoscale molecular mechanisms in single cells, bleb growth, and nucleus dynamics, to name a few. Enabled by micro/nanotechnology, several novel microfluidic devices have been developed recently with better accuracy, sensitivity, and throughput. Further technical advancements of microfluidics-based micropipette aspiration would have broad applications in both fundamental cell mechanics studies and for disease diagnostics.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Pelling, A. E., and Horton, M. A., 2008, “An Historical Perspective on Cell Mechanics,” Pflugers Arch.-Eur. J. Physiol., 456(1), pp. 3–12. [CrossRef]
Jacobs, C. R., Huang, H., and Kwon, R. R., 2013, “Introduction to Cell Mechanics and Mechanobiology Preface,” Introduction to Cell Mechanics and Mechanobiology, Garland Science, New York. pp. V–VII.
Cunningham, K. S., and Gotlieb, A. I., 2005, “The Role of Shear Stress in the Pathogenesis of Atherosclerosis,” Lab. Invest., 85(7), pp. 9–23. [CrossRef] [PubMed]
Chiu, J. J., and Chien, S., 2011, “Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives,” Physiol. Rev., 91(1), pp. 327–387. [CrossRef] [PubMed]
Erle, D. J., and Sheppard, D., 2014, “The Cell Biology of Asthma,” J. Cell Biol., 205(5), pp. 621–631. [CrossRef] [PubMed]
Yamaguchi, H., and Condeelis, J., 2007, “Regulation of the Actin Cytoskeleton in Cancer Cell Migration and Invasion,” Biochim. Biophys. Acta, Mol. Cell Res., 1773(5), pp. 642–652. [CrossRef]
Blanchoin, L., Boujemaa-Paterski, R., Sykes, C., and Plastino, J., 2014, “Actin Dynamics, Architecture, and Mechanics in Cell Motility,” Physiol. Rev., 94(1), pp. 235–263. [CrossRef] [PubMed]
Bao, G., and Suresh, S., 2003, “Cell and Molecular Mechanics of Biological Materials,” Nat. Mater., 2(11), pp. 715–725. [CrossRef] [PubMed]
Hochmuth, R. M., 2000, “Micropipette Aspiration of Living Cells,” J. Biomech., 33(1), pp. 15–22. [CrossRef] [PubMed]
Heinrich, V., and Rawicz, W., 2005, “Automated, High-Resolution Micropipet Aspiration Reveals New Insight Into the Physical Properties of Fluid Membranes,” Langmuir, 21(5), pp. 1962–1971. [CrossRef] [PubMed]
Longo, M. L., and Ly, H. V., 2007, “Micropipet Aspiration for Measuring Elastic Properties of Lipid Bilayers,” Methods Mol. Biol., 400, pp. 421–437. [CrossRef] [PubMed]
Helfrich, W., and Servuss, R.-M., 1984, “Undulations, Steric Interaction and Cohesion of Fluid Membranes,” Il Nuovo Cimento D, 3(1), pp. 137–151. [CrossRef]
Evans, E., and Rawicz, W., 1990, “Entropy-Driven Tension and Bending Elasticity in Condensed-Fluid Membranes,” Phys. Rev. Lett., 64(17), pp. 2094–2097. [CrossRef] [PubMed]
Henriksen, J. R., and Ipsen, J. H., 2004, “Measurement of Membrane Elasticity by Micro-Pipette Aspiration,” Eur. Phys. J. E, 14(2), pp. 149–167. [CrossRef]
Bo, L., and Waugh, R. E., 1989, “Determination of Bilayer Membrane Bending Stiffness by Tether Formation From Giant, Thin-Walled Vesicles,” Biophys. J., 55(3), pp. 509–517. [CrossRef] [PubMed]
Olbrich, K., Rawicz, W., Needham, D., and Evans, E., 2000, “Water Permeability and Mechanical Strength of Polyunsaturated Lipid Bilayers,” Biophys. J., 79(1), pp. 321–327. [CrossRef] [PubMed]
Rawicz, W., Olbrich, K. C., Mcintosh, T., Needham, D., and Evans, E., 2000, “Effect of Chain Length and Unsaturation on Elasticity of Lipid Bilayers,” Biophys. J., 79(1), pp. 328–339. [CrossRef] [PubMed]
Tierney, K. J., Block, D. E., and Longo, M. L., 2005, “Elasticity and Phase Behavior of DPPC Membrane Modulated by Cholesterol, Ergosterol, and Ethanol,” Biophys. J., 89(4), pp. 2481–2493. [CrossRef] [PubMed]
Goulian, M., Mesquita, O. N., Fygenson, D. K., Nielsen, C., Andersen, O. S., and Libchaber, A., 1998, “Gramicidin Channel Kinetics Under Tension,” Biophys. J., 74(1), pp. 328–337. [CrossRef] [PubMed]
Evans, E., and Yeung, A., 1989, “Apparent Viscosity and Cortical Tension of Blood Granulocytes Determined by Micropipet Aspiration,” Biophys. J., 56(1), pp. 151–160. [CrossRef] [PubMed]
Jones, W. R., Ting-Beall, H. P., Lee, G. M., Kelley, S. S., Hochmuth, R. M., and Guilak, F., 1999, “Alterations in the Young's Modulus and Volumetric Properties of Chondrocytes Isolated From Normal and Osteoarthritic Human Cartilage,” J. Biomech., 32(2), pp. 119–127. [CrossRef] [PubMed]
Theret, D. P., Levesque, M. J., Sato, M., Nerem, R. M., and Wheeler, L. T., 1988, “The Application of a Homogeneous Half-Space Model in the Analysis of Endothelial Cell Micropipette Measurements,” ASME J. Biomech. Eng., 110(3), pp. 190–199. [CrossRef]
Vaziri, A., and Mofrad, M. R. K., 2007, “Mechanics and Deformation of the Nucleus in Micropipette Aspiration Experiment,” J. Biomech., 40(9), pp. 2053–2062. [CrossRef] [PubMed]
Dahl, K. N., Engler, A. J., Pajerowski, J. D., and Discher, D. E., 2005, “Power-Law Rheology of Isolated Nuclei With Deformation Mapping of Nuclear Substructures,” Biophys. J., 89(4), pp. 2855–2864. [CrossRef] [PubMed]
Rowat, A. C., Lammerding, J., and Ipsen, J. H., 2006, “Mechanical Properties of the Cell Nucleus and the Effect of Emerin Deficiency,” Biophys. J., 91(12), pp. 4649–4664. [CrossRef] [PubMed]
Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J., and Discher, D. E., 2007, “Physical Plasticity of the Nucleus in Stem Cell Differentiation,” Proc. Natl. Acad. Sci. U.S.A., 104(40), pp. 15619–15624. [CrossRef] [PubMed]
Ricca, B. L., Venugopalan, G., and Fletcher, D. A., 2013, “To Pull or Be Pulled: Parsing the Multiple Modes of Mechanotransduction,” Curr. Opin. Cell Biol., 25(5), pp. 558–564. [CrossRef] [PubMed]
Mitrossilis, D., Fouchard, J., Guiroy, A., Desprat, N., Rodriguez, N., Fabry, B., and Asnacios, A., 2009, “Single-Cell Response to Stiffness Exhibits Muscle-Like Behavior,” Proc. Natl. Acad. Sci. U.S.A., 106(43), pp. 18243–18248. [CrossRef] [PubMed]
Mak, M., Reinhart-King, C. A., and Erickson, D., 2013, “Elucidating Mechanical Transition Effects of Invading Cancer Cells With a Subnucleus-Scaled Microfluidic Serial Dimensional Modulation Device,” Lab Chip, 13(3), pp. 340–348. [CrossRef] [PubMed]
Chesla, S. E., Selvaraj, P., and Zhu, C., 1998, “Measuring Two-Dimensional Receptor-Ligand Binding Kinetics by Micropipette,” Biophys. J., 75(3), pp. 1553–1572. [CrossRef] [PubMed]
Evans, E., Leung, A., Heinrich, V., and Zhu, C., 2004, “Mechanical Switching and Coupling Between Two Dissociation Pathways in a P-Selectin Adhesion Bond,” Proc. Natl. Acad. Sci. U.S.A., 101(31), pp. 11281–11286. [CrossRef] [PubMed]
Tabdili, H., Langer, M., Shi, Q. M., Poh, Y. C., Wang, N., and Leckband, D., 2012, “Cadherin-Dependent Mechanotransduction Depends on Ligand Identity but Not Affinity,” J. Cell Sci., 125(18), pp. 4362–4371. [CrossRef] [PubMed]
Tinevez, J. Y., Schulze, U., Salbreux, G., Roensch, J., Joanny, J. F., and Paluch, E., 2009, “Role of Cortical Tension in Bleb Growth,” Proc. Natl. Acad. Sci. U.S.A., 106(44), pp. 18581–18586. [CrossRef] [PubMed]
Brugues, J., Maugis, B., Casademunt, J., Nassoy, P., Amblard, F., and Sens, P., 2010, “Dynamical Organization of the Cytoskeletal Cortex Probed by Micropipette Aspiration,” Proc. Natl. Acad. Sci. U.S.A., 107(35), pp. 15415–15420. [CrossRef] [PubMed]
Herant, M., Heinrich, V., and Dembo, M., 2005, “Mechanics of Neutrophil Phagocytosis: Behavior of the Cortical Tension,” J. Cell Sci., 118, pp. 1789–1797. [CrossRef] [PubMed]
Chaigne, A., Campillo, C., Gov, N. S., Voituriez, R., Azoury, J., Umana-Diaz, C., Almonacid, M., Queguiner, I., Nassoy, P., Sykes, C., Verlhac, M. H., and Terret, M. E., 2013, “A Soft Cortex is Essential for Asymmetric Spindle Positioning in Mouse Oocytes,” Nat. Cell Biol., 15(8), pp. 958–966. [CrossRef] [PubMed]
Merkel, R., Simson, R., Simson, D. A., Hohenadl, M., Boulbitch, A., Wallraff, E., and Sackmann, E., 2000, “A Micromechanic Study of Cell Polarity and Plasma Membrane Cell Body Coupling in Dictyostelium,” Biophys. J., 79(2), pp. 707–719. [CrossRef] [PubMed]
Luo, T. Z., Mohan, K., Iglesias, P. A., and Robinson, D. N., 2013, “Molecular Mechanisms of Cellular Mechanosensing,” Nat. Mater., 12(11), pp. 1064–1071. [CrossRef] [PubMed]
Shojaei-Baghini, E., Zheng, Y., and Sun, Y., 2013, “Automated Micropipette Aspiration of Single Cells,” Ann. Biomed. Eng., 41(6), pp. 1208–1216. [CrossRef] [PubMed]
Sackmann, E. K., Fulton, A. L., and Beebe, D. J., 2014, “The Present and Future Role of Microfluidics in Biomedical Research,” Nature, 507(7491), pp. 181–189. [CrossRef] [PubMed]
Shelby, J. P., White, J., Ganesan, K., Rathod, P. K., and Chiu, D. T., 2003, “A Microfluidic Model for Single-Cell Capillary Obstruction by Plasmodium Falciparum-Infected Erythrocytes,” Proc. Natl. Acad. Sci. U.S.A., 100(25), pp. 14618–14622. [CrossRef] [PubMed]
Rosenbluth, M. J., Lam, W. A., and Fletcher, D. A., 2008, “Analyzing Cell Mechanics in Hematologic Diseases With Microfluidic Biophysical Flow Cytometry,” Lab Chip, 8(7), pp. 1062–1070. [CrossRef] [PubMed]
Mak, M., and Erickson, D., 2013, “A Serial Micropipette Microfluidic Device With Applications to Cancer Cell Repeated Deformation Studies,” Integr. Biol., 5(11), pp. 1374–1384. [CrossRef]
Guo, Q., Park, S., and Ma, H. S., 2012, “Microfluidic Micropipette Aspiration for Measuring the Deformability of Single Cells,” Lab Chip, 12(15), pp. 2687–2695. [CrossRef] [PubMed]
Myrand-Lapierre, M. E., Deng, X., Ang, R. R., Matthews, K., Santoso, A. T., and Ma, H., 2014, “Multiplexed Fluidic Plunger Mechanism for the Measurement of Red Blood Cell Deformability,” Lab Chip, 15(1), pp. 159–167. [CrossRef]
Lee, L. M., and Liu, A. P., 2014, “A Microfluidic Pipette Array for Mechanophenotyping of Cancer Cells and Mechanical Gating of Mechanosensitive Channels,” Lab Chip, 15(1), pp. 264–273. [CrossRef]
Dudani, J. S., Gossett, D. R., Tse, H. T., and Di Carlo, D., 2013, “Pinched-Flow Hydrodynamic Stretching of Single-Cells,” Lab Chip, 13(18), pp. 3728–3734. [CrossRef] [PubMed]
Tse, H. T., Gossett, D. R., Moon, Y. S., Masaeli, M., Sohsman, M., Ying, Y., Mislick, K., Adams, R. P., Rao, J., and Di Carlo, D., 2013, “Quantitative Diagnosis of Malignant Pleural Effusions by Single-Cell Mechanophenotyping,” Sci. Transl. Med., 5(212). [CrossRef]


Grahic Jump Location
Fig. 1

Experimental setup of a traditional micropipette aspiration system

Grahic Jump Location
Fig. 2

Study of cell–cell interaction using micropipette aspiration for cell manipulations. (a) Measure of cadherin binding force between CHO cells and RBCs (Reproduced with permission from Elsevier–Cell Press [30]), (b) measurement of the bond strength of a single receptor–ligand bond pair (Reproduced with permission from PNAS [31]), and (c) trace of the adhesion force of P-selectin glycoprotein ligand 1 in leukocyte (Reproduced with permission from Journal of Cell Science–The Company of Biologists [32]).

Grahic Jump Location
Fig. 3

Molecular mechanics of single cell by micropipette aspiration. (a) Bleb-based cell motility (Reproduced with permission from PNAS [34]), (b) organization of cytoskeletal proteins (Reproduced with permission from PNAS [33]), and (c) measurement of cortical tension on cell blebbing induced by laser ablations (Reproduced with permission from Nature Materials–Nature Publishing Group [38]).

Grahic Jump Location
Fig. 4

Micropipette aspiration enabled by microfluidics (a) a serial micropipette array to study breast cancer viscoelastic deformation (Reproduced with permission from Integrative Biology–RSC Society [43]), (b) a microfluidic plunger device to study the deformability of RBCs (Reproduced with permission from Lab on a Chip–RSC Society [45]), and (c) a μFPA to measure mechanical properties of cancer cells (Reproduced with permission from Lab on a Chip–RSC Society [46])



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In