Research Papers

Single-Crystalline, Nanoporous Gallium Nitride Films With Fine Tuning of Pore Size for Stem Cell Engineering

[+] Author and Article Information
Lin Han

Biomedical Engineering,
Yale University,
Malone Center Room / space 103C,
55 Prospect Street,
New Haven, CT 06511
e-mail: han.lin@yale.edu

Jing Zhou

Yale School of Medicine,
Biomedical Engineering,
Yale University, Room 314,
10 Amistad Street,
New Haven, CT 06510
e-mail: jzjzhou@gmail.com

Yubing Sun

Mechanical Engineering,
University of Michigan,
2664 GGB (George G. Brown Laboratory),
2350 Hayward,
Ann Arbor, MI 48109-2125
e-mail: ybsun@umich.edu

Yu Zhang

Electrical Engineering,
Yale University,
15 Prospect Street,
New Haven, CT 06511
e-mail: yuzhang18@gmail.com

Jung Han

Electrical Engineering,
Yale University, Becton 517,
15 Prospect Street,
New Haven, CT 06511
e-mail: jung.han@yale.edu

Jianping Fu

Mechanical Engineering,
Biomedical Engineering,
University of Michigan,
2664 GGB (George G. Brown Laboratory),
2350 Hayward,
Ann Arbor, MI 48109-2125
e-mail: jphu@umich.edu

Rong Fan

Biomedical Engineering,
Yale University, Malone 213,
55 Prospect Street,
New Haven, CT 06511
e-mail: rong.fan@yale.edu

1L. Han and J. Zhou contributed equally to this work.

Manuscript received February 2, 2015; final manuscript received March 17, 2015; published online June 24, 2015. Assoc. Editor: Donglei (Emma) Fan.

J. Nanotechnol. Eng. Med 5(4), 040903 (Nov 01, 2014) (9 pages) Paper No: NANO-15-1012; doi: 10.1115/1.4030615 History: Received February 02, 2015; Revised March 17, 2015; Online June 24, 2015

Single-crystalline nanoporous gallium nitride (GaN) thin films were fabricated with the pore size readily tunable in 20–100 nm. Uniform adhesion and spreading of human mesenchymal stem cells (hMSCs) seeded on these thin films peak on the surface with pore size of 30 nm. Substantial cell elongation emerges as pore size increases to ∼80 nm. The osteogenic differentiation of hMSCs occurs preferentially on the films with 30 nm sized nanopores, which is correlated with the optimum condition for cell spreading, which suggests that adhesion, spreading, and stem cell differentiation are interlinked and might be coregulated by nanotopography.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Collins, R. T., Fauchet, P. M., and Tischler, M. A., 1997, “Porous Silicon: From Luminescence to LEDs,” Phys. Today, 50(1), pp. 24–31. [CrossRef]
Lazarouk, S., Jaguiro, P., Katsouba, S., Masini, G., La Monica, S., Maiello, G., and Ferrari, A., 1996, “Stable Electroluminescence From Reverse Biased n-Type Porous Silicon-Aluminum Schottky Junction Device,” Appl. Phys. Lett., 68(15), pp. 2108–2110. [CrossRef]
Richter, A., Steiner, P., Kozlowski, F., and Lang, W., 1991, “Current-Induced Light-Emission From a Porous Silicon Device,” IEEE Electron Device Lett., 12(12), pp. 691–692. [CrossRef]
Steiner, P., Kozlowski, F., and Lang, W., 1993, “Light-Emitting Porous Silicon Diode With an Increased Electroluminescence Quantum Efficiency,” Appl. Phys. Lett., 62(21), pp. 2700–2702. [CrossRef]
Foucaran, A., Pascal-Delannoy, F., Giani, A., Sackda, A., Combette, P., and Boyer, A., 1997, “Porous Silicon Layers Used for Gas Sensor Applications,” Thin Solid Films, 297(1–2), pp. 317–320. [CrossRef]
Sailor, M. J., and Link, J. R., 2005, “‘Smart Dust': Nanostructured Devices in a Grain of Sand,” Chem. Commun., 21(11), pp. 1375–1383. [CrossRef]
Chan, S., Fauchet, P. M., Li, Y., Rothberg, L. J., and Miller, B. L., 2000, “Porous Silicon Microcavities for Biosensing Applications,” Phys. Status Solidi A, 182(1), pp. 541–546. [CrossRef]
Coffer, J. L., Whitehead, M. A., Nagesha, D. K., Mukherjee, P., Akkaraju, G., Totolici, M., Saffie, R. S., and Canham, L. T., 2005, “Porous Silicon-Based Scaffolds for Tissue Engineering and Other Biomedical Applications,” Phys. Status Solidi A, 202(8), pp. 1451–1455. [CrossRef]
Lin, V. S. Y., Motesharei, K., Dancil, K. P., Sailor, M. J., and Ghadiri, M. R., 1997, “A Porous Silicon-Based Optical Interferometric Biosensor,” Science, 278(5339), pp. 840–843. [CrossRef] [PubMed]
Thust, M., Schöning, M. J., Frohnhoff, S., Arens-Fischer, R., Kordos, P., and Lüth, H., 1996, “Porous Silicon as a Substrate Material for Potentiometric Biosensors,” Meas. Sci. Technol., 7(1), pp. 26–29. [CrossRef]
Dancil, K. P. S., Greiner, D. P., and Sailor, M. J., 1999, “A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface,” J. Am. Chem. Soc., 121(34), pp. 7925–7930. [CrossRef]
Haidary, S. M., Corcoles, E. P., and Ali, N. K., 2012, “Nanoporous Silicon as Drug Delivery Systems for Cancer Therapies,” J. Nanomater., 2012, p. 830503. [CrossRef]
Ileri, N., Létant, S. E., Britten, J., Nguyen, H., Larson, C., Zaidi, S., Palazoglu, A., Faller, R., Tringe, J. W., and Stroeve, P., 2009, “Efficient Nanoporous Silicon Membranes for Integrated Microfluidic Separation and Sensing Systems,” MRS Proc., 1191, pp. 87–92. [CrossRef]
Kim, S. T., Kim, D.-J., Kim, T.-J., Seo, D.-W., Kim, T.-H., Lee, S.-Y., Kim, K., Lee, K.-M., and Lee, S.-K., 2010, “Novel Streptavidin-Functionalized Silicon Nanowire Arrays for CD4(+) T Lymphocyte Separation,” Nano Lett., 10(8), pp. 2877–2883. [CrossRef] [PubMed]
Lee, S. K., Kim, G.-S., Wu, Y., Kim, D.-J., Lu, Y., Kwak, M., Han, L., Hyung, J.-H., Seol, J.-K., Sander, C., Gonzalez, A., Li, J., and Fan, R., 2012, “Nanowire Substrate-Based Laser Scanning Cytometry for Quantitation of Circulating Tumor Cells,” Nano Lett., 12(6), pp. 2697–2704. [CrossRef] [PubMed]
Shalek, A. K., Robinson, J. T., Karp, E. S., Lee, J. S., Ahn, D.-R., Yoon, M.-H., Sutton, A., Jorgolli, M., Gertner, R. S., Gujral, T. S., MacBeath, G., Yang, E. G., and Park, H., 2010, “Vertical Silicon Nanowires as a Universal Platform for Delivering Biomolecules Into Living Cells,” Proc. Natl. Acad. Sci. U. S. A., 107(5), pp. 1870–1875. [CrossRef] [PubMed]
Andersson, A. S., Bäckhed, F., von Euler, A., Richter-Dahlfors, A., Sutherland, D., and Kasemo, B., 2003, “Nanoscale Features Influence Epithelial Cell Morphology and Cytokine Production,” Biomaterials, 24(20), pp. 3427–3436. [CrossRef] [PubMed]
Dalby, M. J., Riehle, M. O., Johnstone, H. J., Affrossman, S., and Curtis, A. S., 2002, “Polymer-Demixed Nanotopography: Control of Fibroblast Spreading and Proliferation,” Tissue Eng., 8(6), pp. 1099–1108. [CrossRef] [PubMed]
Dalby, M. J., Yarwood, S. J., Riehle, M. O., Johnstone, H. J., Affrossman, S., and Curtis, A. S., 2002, “Increasing Fibroblast Response to Materials Using Nanotopography: Morphological and Genetic Measurements of Cell Response to 13-nm-High Polymer Demixed Islands,” Exp. Cell Res., 276(1), pp. 1–9. [CrossRef] [PubMed]
Rice, J. M., Hunt, J. A., Gallagher, J. A., Hanarp, P., Sutherland, D. S., and Gold, J., 2003, “Quantitative Assessment of the Response of Primary Derived Human Osteoblasts and Macrophages to a Range of Nanotopography Surfaces in a Single Culture Model In Vitro,” Biomaterials, 24(26), pp. 4799–4818. [CrossRef] [PubMed]
Riehle, M. O., Dalby, M. J., Johnstone, H., MacIntosh, A., and Affrossman, S., 2003, “Cell Behaviour of Rat Calvaria Bone Cells on Surfaces With Random Nanometric Features,” Mater. Sci. Eng., C, 23(3), pp. 337–340. [CrossRef]
Dalby, M. J., Gadegaard, N., Riehle, M. O., Wilkinson, C. D., and Curtis, A. S., 2004, “Investigating Filopodia Sensing Using Arrays of Defined Nano-Pits Down to 35 nm Diameter in Size,” Int. J. Biochem. Cell Biol., 36(10), pp. 2005–2015. [CrossRef] [PubMed]
Dalby, M. J., Riehle, M. O., Johnstone, H. J., Affrossman, S., and Curtis, A. S., 2003, “Nonadhesive Nanotopography: Fibroblast Response to Poly(n-Butyl Methacrylate)-Poly(Styrene) Demixed Surface Features,” J. Biomed. Mater. Res., Part A, 67A(3), pp. 1025–1032. [CrossRef]
Goldberg, D. J., and Burmeister, D. W., 1986, “Stages in Axon Formation-Observations of Growth of Aplysia Axons in Culture Using Video-Enhanced Contrast-Differential Interference Contrast Microscopy,” J. Cell Biol., 103(5), pp. 1921–1931. [CrossRef] [PubMed]
Polinsky, M., Balazovich, K., and Tosney, K. W., 2000, “Identification of an Invariant Response: Stable Contact With Schwann Cells Induces Veil Extension in Sensory Growth Cones,” J. Neurosci., 20(3), pp. 1044–1055. [PubMed]
Yim, E. K. F., Reano, R. M., Pang, S. W., Yee, A. F., Chen, C. S., and Leong, K. W., 2005, “Nanopattern-Induced Changes in Morphology and Motility of Smooth Muscle Cells,” Biomaterials, 26(26), pp. 5405–5413. [CrossRef] [PubMed]
Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., Wilkinson, C. D. W., and Oreffo, R. O. C., 2007, “The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder,” Nat. Mater., 6(12), pp. 997–1003. [CrossRef] [PubMed]
Yim, E. K. F., Pang, S. W., and Leong, K. W., 2007, “Synthetic Nanostructures Inducing Differentiation of Human Mesenchymal Stem Cells Into Neuronal Lineage,” Exp. Cell Res., 313(9), pp. 1820–1829. [CrossRef] [PubMed]
Oh, S., Brammer, K. S., Li, Y. S., Teng, D., Engler, A. J., Chien, S., and Jin, S., 2009, “Stem Cell Fate Dictated Solely by Altered Nanotube Dimension,” Proc. Natl. Acad. Sci. U. S. A., 106(7), pp. 2130–2135. [CrossRef] [PubMed]
McMurray, R. J., Gadegaard, N., Tsimbouri, P. M., Burgess, K. V., McNamara, L. E., Tare, R., Murawski, K., Kingham, E., Oreffo, R. O. C., and Dalby, M. J., 2011, “Nanoscale Surfaces for the Long-Term Maintenance of Mesenchymal Stem Cell Phenotype and Multipotency,” Nat. Mater., 10(8), pp. 637–644. [CrossRef] [PubMed]
Yim, E. K. F., Darling, E. M., Kulangara, K., Guilak, F., and Leong, K. W., 2010, “Nanotopography-Induced Changes in Focal Adhesions, Cytoskeletal Organization, and Mechanical Properties of Human Mesenchymal Stem Cells,” Biomaterials, 31(6), pp. 1299–1306. [CrossRef] [PubMed]
Bauer, S., Park, J., Faltenbacher, J., Berger, S., von der Mark, K., and Schmuki, P., 2009, “Size Selective Behavior of Mesenchymal Stem Cells on ZrO2 and TiO2 Nanotube Arrays,” Integr. Biol., 1(8–9), pp. 525–532. [CrossRef]
Webster, T. J., Ergun, C., Doremus, R. H., Siegel, R. W., and Bizios, R., 2000, “Enhanced Functions of Osteoblasts on Nanophase Ceramics,” Biomaterials, 21(17), pp. 1803–1810. [CrossRef] [PubMed]
Popat, K. C., Chatvanichkul, K. I., Barnes, G. L., Latempa, T. J., Jr., Grimes, C. A., and Desai, T. A., 2007, “Osteogenic Differentiation of Marrow Stromal Cells Cultured on Nanoporous Alumina Surfaces,” J. Biomed. Mater. Res., Part A, 80A(4), pp. 955–964. [CrossRef]
Kim, J. A., Jang, E. Y., Kang, T. J., Yoon, S., Ovalle-Robles, R., Rhee, W. J., Kim, T., Baughman, R. H., Kim, Y. H., and Park, T. H., 2012, “Regulation of Morphogenesis and Neural Differentiation of Human Mesenchymal Stem Cells Using Carbon Nanotube Sheets,” Integr. Biol., 4(6), pp. 587–594. [CrossRef]
Kim, S. J., Lee, J. K., Kim, J. W., Jung, J. W., Seo, K., Park, S. B., Roh, K. H., Lee, S. R., Hong, Y. H., Kim, S. J., Lee, Y. S., Kim, S. J., and Kang, K. S., 2008, “Surface Modification of Polydimethylsiloxane (PDMS) Induced Proliferation and Neural-Like Cells Differentiation of Umbilical Cord Blood-Derived Mesenchymal Stem Cells,” J. Mater. Sci.: Mater. Med., 19(8), pp. 2953–2962. [CrossRef] [PubMed]
Park, J., Bauer, S., von der Mark, K., and Schmuki, P., 2007, “Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate,” Nano Lett., 7(6), pp. 1686–1691. [CrossRef] [PubMed]
Jewett, S. A., Makowski, M. S., Andrews, B., Manfra, M. J., and Ivanisevic, A., 2012, “Gallium Nitride is Biocompatible and Non-Toxic Before and After Functionalization With Peptides,” Acta Biomater., 8(2), pp. 728–733. [CrossRef] [PubMed]
Zhang, Y., Ryu, S.-W., Yerino, C., Leung, B., Sun, Q., Song, Q., Cao, H., and Han, J., 2010, “A Conductivity-Based Selective Etching for Next Generation GaN Devices,” Phys. Status Solidi B, 247(7), pp. 1713–1716. [CrossRef]
Zhang, Y., Sun, Q., Leung, B., Simon, J., Lee, M. L., and Han, J., 2011, “The Fabrication of Large-Area, Free-Standing GaN by a Novel Nanoetching Process,” Nanotechnology, 22(4), p. 045603. [CrossRef] [PubMed]
Cullis, A. G., and Canham, L. T., 1991, “Visible-Light Emission Due to Quantum Size Effects in Highly Porous Crystalline Silicon,” Nature, 353(6342), pp. 335–338. [CrossRef]


Grahic Jump Location
Fig. 1

SEM images of the top view (a)–(d) and the cross section (e)–(h) of nanoporous GaN films etched at 10 V, 15 V, 20 V, and 25 V. The scale bar is 500 nm.

Grahic Jump Location
Fig. 2

Pore size distributions of GaN nanoporous films under different etching voltages: (a) 10 V, (b) 15 V, (c) 20 V, and (d) 25 V

Grahic Jump Location
Fig. 3

The dependence of pore size (a) and porosity (b) on the etching voltages

Grahic Jump Location
Fig. 4

TEM analysis of nanoporous GaN films. (a) The nanopores uniformly cover the surface of GaN film. (b) Higher magnification image shows the pore size is ∼20 nm (doping concentration = 5 × 1018cm−3 and etching voltage = 10 V). (c) Selected-area electron diffraction pattern (SAD) of the nanoporous GaN membrane shows the sixfold symmetry along the [0001] axis. The scale bar in (a) is 200 nm and (b) is 20 nm.

Grahic Jump Location
Fig. 5

hMSCs adhesion and spreading on GaN films with and without nanopores. Immunofluorescent images of hMSCs on (a) plain GaN film, and GaN films with (b) 20 nm, (c) 30 nm, (d) 80 nm, and (e) 95 nm nanopores, after 4 hrs culture; on (f) plain GaN film, and GaN films with (g) 20 nm, (h) 30 nm, (i) 80 nm, and (j) 95 nm nanopores, after 24 hrs culture. The scale bar is 400 μm.

Grahic Jump Location
Fig. 6

Quantify the morphology of hMSCs cultured on the plain and nanoporous GaN films with different pore sizes: the spreading area (a) and the elongation (b) of cells after 4 hrs culture; the spreading area (c) and the elongation (d) of cells after 24 hrs culture. * = significant at 5% level; ** = significant at 1% level.

Grahic Jump Location
Fig. 7

(a) Brightfield images of hMSCs cultured in osteogenesis media on nanoporous GaN films for seven days and ALP was stained with fast blue RR salt. (b) Quantification of percentage of ALP+ cells cultured on naoporous GaN substrates. The scale bar is 100 μm.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In