Research Papers

Electric-Field Enhanced Molecule Detection in Suspension on Assembled Plasmonic Arrays by Raman Spectroscopy

[+] Author and Article Information
Chao Liu

Materials Science and Engineering Program,
The University of Texas at Austin,
Austin, TX 78712
e-mail: chaoliu2011@utexas.edu

Xiaobin Xu

Materials Science and Engineering Program,
The University of Texas at Austin,
Austin, TX 78712
e-mail: xxu.uta@gmail.com

D. L. Fan

Materials Science and Engineering Program;
Department of Mechanical Engineering,
The University of Texas at Austin,
Austin, TX 78712
e-mail: dfan@austin.utexas.edu

1Corresponding author.

Manuscript received February 1, 2015; final manuscript received May 29, 2015; published online July 1, 2015. Assoc. Editor: Jianping Fu.

J. Nanotechnol. Eng. Med 5(4), 040906 (Nov 01, 2014) (6 pages) Paper No: NANO-15-1011; doi: 10.1115/1.4030769 History: Received February 01, 2015; Revised May 29, 2015; Online July 01, 2015

One of the greatest challenges in surface enhanced Raman scattering (SERS) sensing is to detect biochemicals directly from suspension with ultrasensitivity. In this work, we employed strategically designed longitudinal nanocapsule structures with uniformly surface distributed Ag nanoparticles (Ag NPs) to dually focus and enhance SERS sensitivity of biochemicals in suspension assisted with electric fields. By tuning the reaction conditions, Ag NPs were synthesized and uniformly grown with optimized sizes and junctions on the surface of nanocapsules for well reproducible detection. The Ag NPs can further concentrate molecules from suspension due to induced electrokinetic effects in electric fields. As a result, the signals of Nile blue molecules can be enhanced by 34.4±3.1% at optimal alternating current (AC) frequencies and voltages compared to that without electric fields. This work demonstrates the dual roles of a new type of plasmonic NPs for molecule concentration and detection, which could inspire new Raman sensing devices for applications in microfluidics.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Kang, T., Yoo, S. M., Yoon, I., Lee, S. Y., and Kim, B., 2010, “Patterned Multiplex Pathogen DNA Detection by Au Particle-on-Wire SERS Sensor,” Nano Lett., 10(4), pp. 1189–1193. [CrossRef] [PubMed]
Barhoumi, A., and Halas, N. J., 2010, “Label-Free Detection of DNA Hybridization Using Surface Enhanced Raman Spectroscopy,” J. Am. Chem. Soc., 132(37), pp. 12792–12793. [CrossRef] [PubMed]
Bell, S. E. J., and Sirimuthu, N. M. S., 2006, “Surface-Enhanced Raman Spectroscopy (SERS) for Sub-Micromolar Detection of DNA/RNA Mononucleotides,” J. Am. Chem. Soc., 128(49), pp. 15580–15581. [CrossRef] [PubMed]
Bhandari, D., Walworth, M. J., and Sepaniak, M. J., 2009, “Dual Function Surface-Enhanced Raman Active Extractor for the Detection of Environmental Contaminants,” Appl. Spectrosc., 63(5), pp. 571–578. [CrossRef] [PubMed]
Alvarez-Puebla, R. A., Dos Santos, D. S., and Aroca, R. F., 2007, “SERS Detection of Environmental Pollutants in Humic Acid-Gold Nanoparticle Composite Materials,” Analyst, 132(12), pp. 1210–1214. [CrossRef] [PubMed]
Chou, A., Jaatinen, E., Buividas, R., Seniutinas, G., Juodkazis, S., Izake, E. L., and Fredericks, P. M., 2012, “SERS Substrate for Detection of Explosives,” Nanoscale, 4(23), pp. 7419–7424. [CrossRef] [PubMed]
Demeritte, T., Kanchanapally, R., Fan, Z., Singh, A. K., Senapati, D., Dubey, M., Zakar, E., and Ray, P. C., 2012, “Highly Efficient SERS Substrate for Direct Detection of Explosive TNT Using Popcorn-Shaped Gold Nanoparticle-Functionalized SWCNT Hybrid,” Analyst, 137(21), pp. 5041–5045. [CrossRef] [PubMed]
Stuart, D. A., Biggs, K. B., and Van Duyne, R. P., 2006, “Surface-Enhanced Raman Spectroscopy of Half-Mustard Agent,” Analyst, 131(4), pp. 568–572. [CrossRef] [PubMed]
Le Ru, E. C., Blackie, E., Meyer, M., and Etchegoin, P. G., 2007, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C, 111(37), pp. 13794–13803. [CrossRef]
Nie, S. M., and Emery, S. R., 1997, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science, 275(5303), pp. 1102–1106. [CrossRef] [PubMed]
Xu, X. B., Kim, K., Li, H. F., and Fan, D. L., 2012, “Ordered Arrays of Raman Nanosensors for Ultrasensitive and Location Predictable Biochemical Detection,” Adv. Mater., 24(40), pp. 5457–5463. [CrossRef] [PubMed]
Jeanmaire, D. L., and Van Duyne, R. P., 1977, “Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode,” J. Electroanal. Chem. Interfacial Electrochem., 84(1), pp. 1–20. [CrossRef]
Fleischmann, M., Hendra, P. J., and Mcquilla, A. J., 1974, “Raman-Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett., 26(2), pp. 163–166. [CrossRef]
Tao, A., Kim, F., Hess, C., Goldberger, J., He, R., Sun, Y., Xia, Y., and Yang, P., 2003, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett., 3(9), pp. 1229–1233. [CrossRef]
Banholzer, M. J., Qin, L. D., Millstone, J. E., Osberg, K. D., and Mirkin, C. A., 2009, “On-Wire Lithography: Synthesis, Encoding and Biological Applications,” Nat. Protoc., 4(6), pp. 838–848. [CrossRef] [PubMed]
Wang, Y. L., Lee, K., and Irudayaraj, J., 2010, “Silver Nanosphere SERS Probes for Sensitive Identification of Pathogens,” J. Phys. Chem. C, 114(39), pp. 16122–16128. [CrossRef]
Chon, H., Lee, S., Son, S. W., Oh, C. H., and Choo, J., 2009, “Highly Sensitive Immunoassay of Lung Cancer Marker Carcinoembryonic Antigen Using Surface-Enhanced Raman Scattering of Hallow Gold Nanospheres,” Anal. Chem., 81(8), pp. 3029–3034. [CrossRef] [PubMed]
Stockle, R. M., Suh, Y. D., Deckert, V., and Zenobi, R., 2000, “Nanoscale Chemical Analysis by Tip-Enhanced Raman Spectroscopy,” Chem. Phys. Lett., 318(1-3), pp. 131–136. [CrossRef]
Sonntag, M. D., Klingsporn, J. M., Garibay, L. K., Roberts, J. M., Dieringer, J. A., Seideman, T., Scheidt, K. A., Jensen, L., Schatz, G. C., and Van Duyne, R. P., 2012, “Single-Molecule Tip-Enhanced Raman Spectroscopy,” J. Phys. Chem. C, 116(1), pp. 478–483. [CrossRef]
Prokes, S. M., Glembocki, O. J., Rendell, R. W., and Ancona, M. G., 2007, “Enhanced Plasmon Coupling in Crossed Dielectric/Metal Nanowire Composite Geometries and Applications to Surface-Enhanced Raman Spectroscopy,” Appl. Phys. Lett., 90(9), p. 093105. [CrossRef]
Shen, A. G., Chen, L. F., Xie, W., Hu, J. C., Zeng, A., Richards, R., and Hu, J. M., 2010, “Triplex Au-Ag-C Core Shell Nanoparticles as a Novel Raman Label,” Adv. Funct. Mater., 20(6), pp. 969–975. [CrossRef]
Xu, X. B., Li, H. F., Hasan, D., Ruoff, R. S., Wang, A. X., and Fan, D. L., 2013, “Near-Field Enhanced Plasmonic-Magnetic Bifunctional Nanotubes for Single Cell Bioanalysis,” Adv. Funct. Mater., 23(35), pp. 4332–4338. [CrossRef]
Hughes, M. P., 2003, Nanoelectromechanics in Engineering and Biology, CRC, Boca Raton.
Barik, A., Otto, L. M., Yoo, D., Jose, J., Johnson, T. W., and Oh, S. H., 2014, “Dielectrophoresis-Enhanced Plasmonic Sensing With Gold Nanohole Arrays,” Nano Lett., 14(4), pp. 2006–2012. [CrossRef] [PubMed]
Deng, Y. L., and Juang, Y. J., 2013, “Electrokinetic Trapping and Surface Enhanced Raman Scattering Detection of Biomolecules Using Optofluidic Device Integrated With a Microneedles Array,” Biomicrofluidics, 7(1), p. 014111. [CrossRef]
Park, M., Oh, Y.-J., and Jeong, K.-H., 2013, “Electrophoretic Preconcentration on Plasmonic Nanopillar Arrays for Highly Intense Surface-Enhanced Raman Scattering,” The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Transducers and Eurosensors XXVII, IEEE, pp. 1803–1806.
Cherukulappurath, S., Lee, S. H., Campos, A., Haynes, C. L., and Oh, S.-H., 2014, “Rapid and Sensitive In Situ SERS Detection Using Dielectrophoresis,” Chem. Mater., 26(7), pp. 2445–2452. [CrossRef]
Cho, H. S., Lee, B., Liu, G. L., Agarwal, A., and Lee, L. P., 2009, “Label-Free and Highly Sensitive Biomolecular Detection Using SERS and Electrokinetic Preconcentration,” Lab Chip, 9(23), pp. 3360–3363. [CrossRef] [PubMed]
Fan, D. L., Cammarata, R. C., and Chien, C. L., 2008, “Precision Transport and Assembling of Nanowires in Suspension by Electric Fields,” Appl. Phys. Lett., 92(9), p. 093115. [CrossRef]
Xu, X. B., Hasan, D. H., Wang, L., Chakravarty, S., Chen, R. T., Fan, D. L., and Wang, A. X., 2012, “Guided-Mode-Resonance-Coupled Plasmonic-Active SiO2 Nanotubes for Surface Enhanced Raman Spectroscopy,” Appl. Phys. Lett., 100(19), p. 191114. [CrossRef] [PubMed]
Li, M. W., Bhiladvala, R. B., Morrow, T. J., Sioss, J. A., Lew, K. K., Redwing, J. M., Keating, C. D., and Mayer, T. S., 2008, “Bottom-Up Assembly of Large-Area Nanowire Resonator Arrays,” Nat. Nanotechnol., 3(2), pp. 88–92. [CrossRef] [PubMed]
Smith, B. D., Mayer, T. S., and Keating, C. D., 2012, “Deterministic Assembly of Functional Nanostructures Using Nonuniform Electric Fields,” Annu. Rev. Phys. Chem., 63, pp. 241–263. [CrossRef] [PubMed]
Jones, T. B., 1995, Electromechanics of Particles, Cambridge University Press, New York. [CrossRef]
Fan, D. L., Zhu, F. Q., Cammarata, R. C., and Chien, C. L., 2004, “Manipulation of Nanowires in Suspension by AC Electric Fields,” Appl. Phys. Lett., 85(18), pp. 4175–4177. [CrossRef]
Li, D., 2008, Encyclopedia of Microfluidics and Nanofluidics, Springer, New York.
Cheng, I.-F., Chen, T.-Y., Lu, R.-J., and Wu, H.-W., 2014, “Rapid Identification of Bacteria Utilizing Amplified Dielectrophoretic Force-Assisted Nanoparticle-Induced Surface-Enhanced Raman Spectroscopy,” Nanoscale Res. Lett., 9(324) [CrossRef].
Liu, C., Kim, K., and Fan, D. L., 2014, “Location Deterministic Biosensing From Quantum-Dot-Nanowire Assemblies,” Appl. Phys. Lett., 105(8), p. 083123. [CrossRef] [PubMed]


Grahic Jump Location
Scheme 1

(a) The cross section schematic diagram of a nanocapsule where a metallic Au nanowire serves as the core, a silica layer grown on the surface of the metal core support the Ag NPs growth and Ag NPs uniformly grow on the silica layer. (b) Side view scheme of a nanocapsule.

Grahic Jump Location
Fig. 1

Scanning electron microscopy (SEM) images of (a) arrays of Au nanowires with an average length of 8.5 μm and diameter of 300 nm, (b) Au nanowire encapsulated by a 180 nm thick silica layer, and (c) SEM images of Au/silica nanocapsules coated with Ag NPs (the zoom-in images of Ag NPs are shown in Fig. 2.)

Grahic Jump Location
Fig. 2

SEM images of nanocapsules fabricated at different conditions with reactant concentrations and volumes as: (a) AgNO3 (0.06 M, 350 μl): NH3•H2O (0.12 M, 175 μl), (b) AgNO3 (0.06 M, 400 μl): NH3•H2O (0.12 M, 200 μl), (c) AgNO3 (0.06 M, 500 μl): NH3•H2O (0.12 M, 250 μl), and (d) AgNO3 (0.06 M, 600 μl): NH3•H2O (0.12 M, 300 μl)

Grahic Jump Location
Fig. 3

Raman detection from nanocapsules in 100 μM R-6 G suspension. (a) Well repeatable Raman signals from nanocapsules synthesized in the same batch with volumes of AgNO3 and NH3•H2O as 500 μl: 250 μl. (b) Comparison of Raman signals from samples fabricated at different conditions with volumes of AgNO3 and NH3•H2O as 400 μl: 200 μl (black) 500 μl: 250 μl (red), and 600:300 μl (blue).

Grahic Jump Location
Fig. 4

(a) Schematic diagram of nanocapsules assembled on interdigital microelectrodes, (b) the attraction of molecule to the nanocapsules with the electric fields, (c) Raman image of Nile blue molecules (with background fluorescence of Nile blue molecules and Ag NPs) on arrays of assembled nanocapsules on microelectrodes (enhanced image), and (d) the corresponding optical microscopy image

Grahic Jump Location
Fig. 5

(a) Raman spectrum of Nile blue (250 nM) detected from a nanocapsule in solution, which demonstrated that 595 cm−1 was the most prominent Raman peak and well separated from others. (b) Frequency dependent Raman intensity enhancement at 595 cm−1 of Nile blue molecules (100 nM) recorded after applying an electric field at 20 V and 200 kHz to 1 MHz (the curve in orange is an eye guide.)

Grahic Jump Location
Fig. 6

Time dependent Raman intensity at 595 cm−1 of Nile blue molecules (100 nM) recorded before and after applying an electric field at 200 kHz (a) 5 V, (b) 10 V, (c) 15 V, and (d) 20 V

Grahic Jump Location
Fig. 7

Time dependent Raman intensity of Nile blue molecules (100 nM) at 595 cm−1 recorded when the E-field is turned on and off alternatively at 20 V, 200 kHz



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In