Expert View

Scaffold-Based or Scaffold-Free Bioprinting: Competing or Complementing Approaches?

[+] Author and Article Information
Ibrahim T. Ozbolat

Biomanufacturing Laboratory,
The University of Iowa,
Iowa City, IA 52242
e-mail: ibrahim-ozbolat@uiowa.edu

Manuscript received April 12, 2015; final manuscript received April 16, 2015; published online September 29, 2015. Assoc. Editor: Abraham Quan Wang.

J. Nanotechnol. Eng. Med 6(2), 024701 (Sep 29, 2015) Paper No: NANO-15-1034; doi: 10.1115/1.4030414 History: Received April 12, 2015

Bioprinting is an emerging technology to fabricate artificial tissues and organs through additive manufacturing of living cells in a tissues-specific pattern by stacking them layer by layer. Two major approaches have been proposed in the literature: bioprinting cells in a scaffold matrix to support cell proliferation and growth, and bioprinting cells without using a scaffold structure. Despite great progress, particularly in scaffold-based approaches along with recent significant attempts, printing large-scale tissues and organs is still elusive. This paper demonstrates recent significant attempts in scaffold-based and scaffold-free tissue printing approaches, discusses the advantages and limitations of both approaches, and presents a conceptual framework for bioprinting of scale-up tissue by complementing the benefits of these approaches.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Ozbolat, I. T. , and Yu, Y. , 2013, “Bioprinting Towards Organ Fabrication: Challenges and Future Trends,” IEEE Trans. Biomed. Eng., 60(3), pp. 691–699. [CrossRef] [PubMed]
Mironov, V. , Reis, N. , and Derby, B. , 2006, “Bioprinting: A Beginning,” Tissue Eng., 12(4), pp. 631–634. [CrossRef] [PubMed]
Tasoglu, S. , and Demirci, U. , 2013, “Bioprinting for Stem Cell Research,” Trends Biotechnol., 31(1), pp. 10–19. [CrossRef] [PubMed]
Dababneh, A. B. , and Ozbolat, I. T. , 2014, “Bioprinting Technology: A Current State-Of-The-Art Review,” ASME J. Manuf. Sci. Eng., 136(6), p. 061016. [CrossRef]
Murphy, S. V. , and Atala, A. , 2014, “3D Bioprinting of Tissues and Organs,” Nat. Biotechnol., 32(8), pp. 773–785. [CrossRef] [PubMed]
Malda, J. , Visser, J. , Melchels, F. P. , Jüngst, T. , Hennink, W. E. , Dhert, W. J. A. , Groll, J. , and Hutmacher, D. W. , 2013, “25th Anniversary Article: Engineering Hydrogels for Biofabrication,” Adv. Mater., 25(36), pp. 5011–5028. [CrossRef] [PubMed]
Murphy, S. V. , Skardal, A. , and Atala, A. , 2013, “Evaluation of Hydrogels for Bio-Printing Applications,” J. Biomed. Mater. Res. Part A, 101A(1), pp. 272–284. [CrossRef]
Norotte, C. , Marga, F. S. , Niklason, L. E. , and Forgacs, G. , 2009, “Scaffold-Free Vascular Tissue Engineering Using Bioprinting,” Biomaterials, 30(30), pp. 5910–5917. [CrossRef] [PubMed]
Jakab, K. , Norotte, C. , Marga, F. , Murphy, K. , Vunjak-Novakovic, G. , and Forgacs, G. , 2010, “Tissue Engineering by Self-Assembly and Bio-Printing of Living Cells,” Biofabrication, 2(2), p. 022001. [CrossRef] [PubMed]
Zhao, Y. , Yao, R. , Ouyang, L. , Ding, H. , Zhang, T. , Zhang, K. , Cheng, S. , and Sun, W. , 2014, “Three-Dimensional Printing of Hela Cells for Cervical Tumor Model In Vitro,” Biofabrication, 6(3), p. 035001. [CrossRef] [PubMed]
Ozbolat, I. T. , Chen, H. , and Yu, Y. , 2014, “Development of ‘Multi-Arm Bioprinter’ for Hybrid Biofabrication of Tissue Engineering Constructs,” Rob. Comput. Integr. Manuf., 30(3), pp. 295–304. [CrossRef]
Boland, T. , Xu, T. , Damon, B. , and Cui, X. , 2006, “Application of Inkjet Printing to Tissue Engineering,” Biotechnol. J., 1(9), pp. 910–917. [CrossRef] [PubMed]
Xu, C. , Zhang, M. , Huang, Y. , Ogale, A. , Fu, J. , and Markwald, R. R. , 2014, “Study of Droplet Formation Process During Drop-On-Demand Inkjetting of Living Cell-Laden Bioink,” Langmuir, 30(30), pp. 9130–9138. [CrossRef] [PubMed]
Guillemot, F. , Souquet, A. , Catros, S. , and Guillotin, B. , 2010, “Laser-Assisted Cell Printing: Principle, Physical Parameters Versus Cell Fate and Perspectives in Tissue Engineering,” Nanomedicine, 5(3), pp. 507–515. [CrossRef] [PubMed]
Guillemot, F. , Guillotin, B. , Fontaine, A. , Ali, M. , Catros, S. , Kériquel, V. , Fricain, J.-C. , Rémy, M. , Bareille, R. , and Amédée-Vilamitjana, J. , 2011, “Laser-Assisted Bioprinting to Deal With Tissue Complexity in Regenerative Medicine,” MRS Bull., 36(12), pp. 1015–1019. [CrossRef]
Park, J.-H. , Pérez, R. A. , Jin, G.-Z. , Choi, S.-J. , Kim, H.-W. , and Wall, I. B. , 2012, “Microcarriers Designed for Cell Culture and Tissue Engineering of Bone,” Tissue Eng. Part B, 19(2), pp. 172–190. [CrossRef]
Levato, R. , Visser, J. , Planell, J. A. , Engel, E. , Malda, J. , and Mateos-Timoneda, M. A. , 2014, “Biofabrication of Tissue Constructs by 3D Bioprinting of Cell-Laden Microcarriers,” Biofabrication, 6(3), p. 035020. [CrossRef] [PubMed]
Ott, H. , Matthiesen, T. , Goh, S.-K. , Black, L. , Kren, S. , Netoff, T. , and Taylor, D. , 2008, “Perfusion-Decellularized Matrix: Using Nature's Platform to Engineer a Bioartificial Heart,” Nat. Med., 14, pp. 213–221. [CrossRef] [PubMed]
Pati, F. , Jang, J. , Ha, D.-H. , Kim, S. W. , Rhie, J.-W. , Shim, J.-H. , Kim, D.-H. , and Cho, D.-W. , 2014, “Printing Three-Dimensional Tissue Analogues With Decellularized Extracellular Matrix Bioink,” Nat. Commun., 5, p. 3935. [CrossRef] [PubMed]
Achilli, T.-M. , Meyer, J. , and Morgan, J. R. , 2012, “Advances in the Formation, Use and Understanding of Multi-Cellular Spheroids,” Exp. Opin. Biol. Ther., 12(10), pp. 1347–1360. [CrossRef]
Jakab, K. , Norotte, C. , Damon, B. , Marga, F. , Neagu, A. , Besch-Williford, C. L. , Kachurin, A. , Church, K. H. , Park, H. , Mironov, V. , Markwald, R. , Vunjak-Novakovic, G. , and Forgacs, G. , 2008, “Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures,” Tissue Eng. Part A, 14(3), pp. 413–421. [CrossRef] [PubMed]
Owens, C. M. , Marga, F. , Forgacs, G. , and Heesch, C. M. , 2013, “Biofabrication and Testing of a Fully Cellular Nerve Graft,” Biofabrication, 5(4), p. 045007. [CrossRef] [PubMed]
Lee, K. , Kim, C. , Young Yang, J. , Lee, H. , Ahn, B. , Xu, L. , Yoon Kang, J. , and Oh, K. W. , 2012, “Gravity-Oriented Microfluidic Device for Uniform and Massive Cell Spheroid Formation,” Biomicrofluidics, 6(1), p. 014114. [CrossRef]
Tung, Y.-C. , Hsiao, A. Y. , Allen, S. G. , Torisawa, Y.-S. , Ho, M. , and Takayama, S. , 2011, “High-Throughput 3D Spheroid Culture and Drug Testing Using a 384 Hanging Drop Array,” Analyst, 136(3), pp. 473–478. [CrossRef] [PubMed]
Estes, B. , and Guilak, F. , 2011, “Three-Dimensional Culture Systems to Induce Chondrogenesis of Adipose-Derived Stem Cells,” Adipose-Derived Stem Cells, J. M. Gimble , and B. A. Bunnell , eds., Humana Press, Springer, New York, pp. 201–217. [CrossRef]
Bernard, A. B. , Lin, C.-C. , and Anseth, K. S. , 2012, “A Microwell Cell Culture Platform for the Aggregation of Pancreatic β-Cells,” Tissue Eng., Part C, 18(8), pp. 583–592. [CrossRef]
Kusamori, K. , Nishikawa, M. , Mizuno, N. , Nishikawa, T. , Masuzawa, A. , Shimizu, K. , Konishi, S. , Takahashi, Y. , and Takakura, Y. , 2014, “Transplantation of Insulin-Secreting Multicellular Spheroids for the Treatment of Type 1 Diabetes in Mice,” J. Controlled Release, 173, pp. 119–124. [CrossRef]
Fu, C.-Y. , Tseng, S.-Y. , Yang, S.-M. , Hsu, L. , Liu, C.-H. , and Chang, H.-Y. , 2014, “A Microfluidic Chip With a U-Shaped Microstructure Array for Multicellular Spheroid Formation, Culturing and Analysis,” Biofabrication, 6(1), p. 015009. [CrossRef] [PubMed]
Yu, L. , Chen, M. C. W. , and Cheung, K. C. , 2010, “Droplet-Based Microfluidic System for Multicellular Tumor Spheroid Formation and Anticancer Drug Testing,” Lab Chip, 10(18), pp. 2424–2432. [CrossRef] [PubMed]
Li, Q. , Chow, A. B. , and Mattingly, R. R. , 2010, “Three-Dimensional Overlay Culture Models of Human Breast Cancer Reveal a Critical Sensitivity to Mitogen-Activated Protein Kinase Kinase Inhibitors,” J. Pharmacol. Exp. Ther., 332(3), pp. 821–828. [CrossRef] [PubMed]
Rodday, B. , Hirschhaeuser, F. , Walenta, S. , and Mueller-Klieser, W. , 2011, “Semiautomatic Growth Analysis of Multicellular Tumor Spheroids,” J. Biomol. Screening, 16(9), pp. 1119–1124. [CrossRef]
Barrila, J. , Radtke, A. L. , Crabbé, A. , Sarker, S. F. , Herbst-Kralovetz, M. M. , Ott, C. M. , and Nickerson, C. A. , 2010, “Organotypic 3D Cell Culture Models: Using the Rotating Wall Vessel to Study Host–Pathogen Interactions,” Nat. Rev. Microbiol., 8(11), pp. 791–801. [CrossRef] [PubMed]
Yang, C. C. , and Burg, K. J. L. , 2015, “Designing a Tunable 3D Heterocellular Breast Cancer Tissue Test System,” J. Tissue Eng. Regener. Med., 9(3), pp. 310–314. [CrossRef]
Kucukgul, C. , Ozler, S. B. , Inci, I. , Karakas, E. , Irmak, S. , Gozuacik, D. , Taralp, A. , and Koc, B. , 2014, “3D Bioprinting of Biomimetic Aortic Vascular Constructs With Self-Supporting Cells,” Biotechnol. Bioeng., 112(4), pp. 811–821. [CrossRef]
Gardan, N. , and Schneider, A. , 2014, “Topological Optimization of Internal Patterns and Support in Additive Manufacturing,” J. Manuf. Syst. (in press).
Yu, Y. , Zhang, Y. , and Ozbolat, I. T. , 2014, “A Hybrid Bioprinting Approach for Scale-Up Tissue Fabrication,” ASME J. Manuf. Sci. Eng., 136(6), p. 061013. [CrossRef]
So, K. F. , and Xu, X. M. , 2015, Neural Regeneration, Elsevier Science, San Diego, CA.
Sekine, H. , Shimizu, T. , Sakaguchi, K. , Dobashi, I. , Wada, M. , Yamato, M. , Kobayashi, E. , Umezu, M. , and Okano, T. , 2013, “In Vitro Fabrication of Functional Three-Dimensional Tissues With Perfusable Blood Vessels,” Nat. Commun., 4, p. 1399. [CrossRef] [PubMed]
Takebe, T. , Sekine, K. , Enomura, M. , Koike, H. , Kimura, M. , Ogaeri, T. , Zhang, R.-R. , Ueno, Y. , Zheng, Y.-W. , and Koike, N. , 2013, “Vascularized and Functional Human Liver From an IPSC-Derived Organ Bud Transplant,” Nature, 499(7459), pp. 481–484. [CrossRef] [PubMed]
Ehsan, S. M. , Welch-Reardon, K. M. , Waterman, M. L. , Hughes, C. C. W. , and George, S. C. , 2014, “A Three-Dimensional In Vitro Model of Tumor Cell Intravasation,” Integr. Biol., 6(6), pp. 603–610. [CrossRef]


Grahic Jump Location
Fig. 1

Scaffold-based and scaffold-free bioprinting technologies: (a) extrusion-based bioprinting, (b) droplet-based bioprinting, (c) laser-based bioprinting, (d) bioprinting tissue spheroids, and (e) bioprinting cell pellet

Grahic Jump Location
Fig. 2

Hybrid bioprinting of scaffold-based vascular constructs in tandem with scaffold-free parenchyma tissue, where fusion, tissue remodeling, and self-assembly of tissue strands take place and sprouting can take place between the macrovascular network and capillaries in tissue strands. This concept generalizes the tissue used; however, for different tissue types, modifications on the system would be essential.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In