Review Articles: Engineering Cell Microenvironment Using Novel Hydrogels

Engineering Embryonic Stem Cell Microenvironments for Tailored Cellular Differentiation

[+] Author and Article Information
Chenyu Huang

Department of Plastic, Reconstructive and
Aesthetic Surgery,
Beijing Tsinghua Changgung Hospital,
Medical Center,
Tsinghua University,
Beijing 100084, China;
Department of Plastic Surgery,
Meitan General Hospital,
Beijing 100028, China
e-mail: huangchenyu2014@126.com

Alexander Melerzanov

Cellular and Molecular Technologies Laboratory,
Dolgoprudny 141701, Russia

Yanan Du

Department of Biomedical Engineering,
School of Medicine,
Collaborative Innovation Center for Diagnosis
and Treatment of Infectious Diseases,
Tsinghua University,
Beijing 100084, China
e-mail: duyanan@tsinghua.edu.cn

1Corresponding authors.

Manuscript received October 8, 2015; final manuscript received March 9, 2016; published online May 6, 2016. Assoc. Editor: Feng Xu.

J. Nanotechnol. Eng. Med 6(4), 040801 (May 06, 2016) (10 pages) Paper No: NANO-15-1086; doi: 10.1115/1.4033193 History: Received October 08, 2015; Revised March 09, 2016

The rapid progress of embryonic stem cell (ESCs) research offers great promise for drug discovery, tissue engineering, and regenerative medicine. However, a major limitation in translation of ESCs technology to pharmaceutical and clinical applications is how to induce their differentiation into tailored lineage commitment with satisfactory efficiency. Many studies indicate that this lineage commitment is precisely controlled by the ESC microenvironment in vivo. Engineering and biomaterial-based approaches to recreate a biomimetic cellular microenvironment provide valuable strategies for directing ESCs differentiation to specific lineages in vitro. In this review, we summarize and examine the recent advances in application of engineering and biomaterial-based approaches to control ESC differentiation. We focus on physical strategies (e.g., geometrical constraint, mechanical stimulation, extracellular matrix (ECM) stiffness, and topography) and biochemical approaches (e.g., genetic engineering, soluble bioactive factors, coculture, and synthetic small molecules), and highlight the three-dimensional (3D) hydrogel-based microenvironment for directed ESC differentiation. Finally, future perspectives in ESCs engineering are provided for the subsequent advancement of this promising research direction.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Evans, M. J. , and Kaufman, M. H. , 1981, “ Establishment in Culture of Pluripotent Cells From Mouse Embryos,” Nature, 292(5819), pp. 154–156. [CrossRef] [PubMed]
Martin, G. R. , 1981, “ Isolation of a Pluripotent Cell Line From Early Mouse Embryos Cultured in Medium Conditioned by Teratocarcinoma Stem Cells,” Proc. Natl. Acad. Sci. U.S.A., 78(12), pp. 7634–7638. [CrossRef] [PubMed]
Murry, C. E. , and Keller, G. , 2008, “ Differentiation of Embryonic Stem Cells to Clinically Relevant Populations: Lessons From Embryonic Development,” Cell, 132(4), pp. 661–680. [CrossRef] [PubMed]
Edalat, F. , Bae, H. , Manoucheri, S. , Cha, J. M. , and Khademhosseini, A. , 2012, “ Engineering Approaches Toward Deconstructing and Controlling the Stem Cell Environment,” Ann. Biomed. Eng., 40(6), pp. 1301–1315. [CrossRef] [PubMed]
Stojkovic, M. , Lako, M. , Strachan, T. , and Murdoch, A. , 2004, “ Derivation, Growth and Applications of Human Embryonic Stem Cells,” Reproduction, 128(3), pp. 259–267. [CrossRef] [PubMed]
Keller, G. , 2005, “ Embryonic Stem Cell Differentiation: Emergence of a New Era in Biology and Medicine,” Genes Dev., 19(10), pp. 1129–1155. [CrossRef] [PubMed]
Toh, Y. C. , Blagović, K. , and Voldman, J. , 2010, “ Advancing Stem Cell Research With Microtechnologies: Opportunities and Challenges,” Integr. Biol. (Camb), 2(7–8), pp. 305–325. [CrossRef] [PubMed]
Zhang, H. , Dai, S. , Bi, J. , and Liu, K. K. , 2011, “ Biomimetic Three-Dimensional Microenvironment for Controlling Stem Cell Fate,” Interface Focus, 1(5), pp. 792–803. [CrossRef] [PubMed]
Xu, Z. , Wang, J. , and Du, Y. , 2013, “ Recent Advances in Embryonic Stem Cell Engineering Toward Tailored Lineage Differentiation,” Emerging Trends in Cell and Gene Therapy, M. K. Danquah and R. I. Mahato , eds., Humana Press, New York, pp. 33–54.
Burdick, J. A. , and Vunjak-Novakovic, G. , 2009, “ Engineered Microenvironments for Controlled Stem Cell Differentiation,” Tissue Eng., Part A, 15(2), pp. 205–219. [CrossRef]
Guilak, F. , Cohen, D. M. , Estes, B. T. , Gimble, J. M. , Liedtke, W. , and Chen, C. S. , 2009, “ Control of Stem Cell Fate by Physical Interactions With the Extracellular Matrix,” Cell Stem Cell, 5(1), pp. 17–26. [CrossRef] [PubMed]
Discher, D. E. , Mooney, D. J. , and Zandstra, P. W. , 2009, “ Growth Factors, Matrices, and Forces Combine and Control Stem Cells,” Science, 324(5935), pp. 1673–1677. [CrossRef] [PubMed]
Dickinson, L. E. , Kusuma, S. , and Gerecht, S. , 2011, “ Reconstructing the Differentiation Niche of Embryonic Stem Cells Using Biomaterials,” Macromol. Biosci., 11(1), pp. 36–49. [CrossRef] [PubMed]
Bernard, A. , Renault, J. P. , Michel, B. , Bosshard, H. R. , and Delamarche, E. , 2000, “ Microcontact Printing of Proteins,” Adv. Mater., 12(14), pp. 1067–1070. [CrossRef]
Brown, T. D. , 2000, “ Techniques for Mechanical Stimulation of Cells In Vitro: A Review,” J. Biomech., 33(1), pp. 3–14. [CrossRef] [PubMed]
Saha, S. , Ji, L. , de Pablo, J. J. , and Palecek, S. P. , 2006, “ Inhibition of Human Embryonic Stem Cell Differentiation by Mechanical Strain,” J. Cell. Physiol., 206(1), pp. 126–137. [CrossRef] [PubMed]
Wells, R. G. , 2008, “ The Role of Matrix Stiffness in Regulating Cell Behavior,” Hepatology, 47(4), pp. 1394–1400. [CrossRef] [PubMed]
Park, J. S. , Chu, J. S. , Tsou, A. D. , Diop, R. , Tang, Z. , Wang, A. , and Li, S. , 2011, “ The Effect of Matrix Stiffness on the Differentiation of Mesenchymal Stem Cells in Response to TGF-Beta,” Biomaterials, 32(16), pp. 3921–3930. [CrossRef] [PubMed]
Chai, C. , and Leong, K. W. , 2007, “ Biomaterials Approach to Expand and Direct Differentiation of Stem Cells,” Mol. Ther., 15(3), pp. 467–480. [CrossRef] [PubMed]
Massumi, M. , Abasi, M. , Babaloo, H. , Terraf, P. , Safi, M. , Saeed, M. , Barzin, J. , Zandi, M. , and Soleimani, M. , 2012, “ The Effect of Topography on Differentiation Fates of Matrigel-Coated Mouse Embryonic Stem Cells Cultured on PLGA Nanofibrous Scaffolds,” Tissue Eng., Part A, 18(5–6), pp. 609–620. [CrossRef]
Peerani, R. , Rao, B. M. , Bauwens, C. , Yin, T. , Wood, G. A. , Nagy, A. , Kumacheva, E. , and Zandstra, P. W. , 2007, “ Niche-Mediated Control of Human Embryonic Stem Cell Self-Renewal and Differentiation,” EMBO J., 26(22), pp. 4744–4755. [CrossRef] [PubMed]
Lee, L. H. , Peerani, R. , Ungrin, M. , Joshi, C. , Kumacheva, E. , and Zandstra, P. , 2009, “ Micropatterning of Human Embryonic Stem Cells Dissects the Mesoderm and Endoderm Lineages,” Stem Cell Res., 2(2), pp. 155–162. [CrossRef] [PubMed]
Sasaki, D. , Shimizu, T. , Masuda, S. , Kobayashi, J. , Itoga, K. , Tsuda, Y. , Yamashita, J. K. , Yamato, M. , and Okano, T. , 2009, “ Mass Preparation of Size-Controlled Mouse Embryonic Stem Cell Aggregates and Induction of Cardiac Differentiation by Cell Patterning Method,” Biomaterials, 30(26), pp. 4384–4389. [CrossRef] [PubMed]
Bayati, V. , Sadeghi, Y. , Shokrgozar, M. A. , Haghighipour, N. , Azadmanesh, K. , Amanzadeh, A. , and Azari, S. , 2011, “ The Evaluation of Cyclic Uniaxial Strain on Myogenic Differentiation of Adipose-Derived Stem Cells,” Tissue Cell, 43(6), pp. 359–366. [CrossRef] [PubMed]
Dawson, E. , Mapili, G. , Erickson, K. , Taqvi, S. , and Roy, K. , 2008, “ Biomaterials for Stem Cell Differentiation,” Adv. Drug Delivery Rev., 60(2), pp. 215–228. [CrossRef]
Shimizu, N. , Yamamoto, K. , Obi, S. , Kumagaya, S. , Masumura, T. , Shimano, Y. , Naruse, K. , Yamashita, J. K. , Igarashi, T. , and Ando, J. , 2008, “ Cyclic Strain Induces Mouse Embryonic Stem Cell Differentiation Into Vascular Smooth Muscle Cells by Activating PDGF Receptor Β,” J. Appl. Physiol., 104(3), pp. 766–772. [CrossRef] [PubMed]
Heo, J. S. , and Lee, J. C. , 2011, “ β-Catenin Mediates Cyclic Strain-Stimulated Cardiomyogenesis in Mouse Embryonic Stem Cells Through ROS-Dependent and Integrin-Mediated PI3K/Akt Pathways,” J. Cell. Biochem., 112(7), pp. 1880–1889. [CrossRef] [PubMed]
Chowdhury, F. , Na, S. , Li, D. , Poh, Y. C. , Tanaka, T. S. , Wang, F. , and Wang, N. , 2010, “ Material Properties of the Cell Dictate Stress-Induced Spreading and Differentiation in Embryonic Stem Cells,” Nat. Mater., 9(1), pp. 82–88. [CrossRef] [PubMed]
Yamamoto, K. , Sokabe, T. , Watabe, T. , Miyazono, K. , Yamashita, J. K. , Obi, S. , Ohura, N. , Matsushita, A. , Kamiya, A. , and Ando, J. , 2005, “ Fluid Shear Stress Induces Differentiation of Flk-1-Positive Embryonic Stem Cells Into Vascular Endothelial Cells In Vitro,” Am. J. Physiol. Heart Circ. Physiol., 288(4), pp. 1915–1924. [CrossRef]
Toh, Y. C. , and Voldman, J. , 2011, “ Fluid Shear Stress Primes Mouse Embryonic Stem Cells for Differentiation in a Self-Renewing Environment Via Heparan Sulfate Proteoglycans Transduction,” FASEB J., 25(4), pp. 1208–1217. [CrossRef] [PubMed]
Damaraju, S. , Matyas, J. R. , Rancourt, D. E. , and Duncan, N. A. , 2014, “ The Effect of Mechanical Stimulation on Mineralization in Differentiating Osteoblasts in Collagen-I Scaffolds,” Tissue Eng., Part A, 20(23–24), pp. 3142–3153. [CrossRef]
Cechin, S. , Alvarez-Cubela, S. , Giraldo, J. A. , Molano, R. D. , Villate, S. , Ricordi, C. , Pileggi, A. , Inverardi, L. , Fraker, C. A. , and Domínguez-Bendala, J. , 2014, “ Influence of In Vitro and In Vivo Oxygen Modulation on Β Cell Differentiation From Human Embryonic Stem Cells,” Stem Cells Transl. Med., 3(3), pp. 277–289. [CrossRef] [PubMed]
Georges, P. C. , and Janmey, P. A. , 2005, “ Cell Type-Specific Response to Growth on Soft Materials,” J. Appl. Physiol., 98(4), pp. 1547–1553. [CrossRef] [PubMed]
Engler, A. J. , Sen, S. , Sweeney, H. L. , and Discher, D. E. , 2006, “ Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell, 126(4), pp. 677–689. [CrossRef] [PubMed]
Evans, N. D. , Minelli, C. , Gentleman, E. , LaPointe, V. , Patankar, S. N. , Kallivretaki, M. , Chen, X. , Roberts, C. J. , and Stevens, M. M. , 2009, “ Substrate Stiffness Affects Early Differentiation Events in Embryonic Stem Cells,” Eur. Cell Mater., 18, pp. 1–13, Discussion 13-4. [PubMed]
Lee, S. , Kim, J. , Park, T. J. , Shin, Y. , Lee, S. Y. , Han, Y. M. , Kang, S. , and Park, H. S. , 2011, “ The Effects of the Physical Properties of Culture Substrates on the Growth and Differentiation of Human Embryonic Stem Cells,” Biomaterials, 32(34), pp. 8816–8829. [CrossRef] [PubMed]
Ali, S. , Wall, I. B. , Mason, C. , Pelling, A. E. , and Veraitch, F. S. , 2015, “ The Effect of Young's Modulus on the Neuronal Differentiation of Mouse Embryonic Stem Cells,” Acta Biomater., 25, pp. 253–267. [CrossRef] [PubMed]
Narayanan, K. , Lim, V. Y. , Shen, J. , Tan, Z. W. , Rajendran, D. , Luo, S. C. , Gao, S. , Wan, A. C. , and Ying, J. Y. , 2014, “ Extracellular Matrix-Mediated Differentiation of Human Embryonic Stem Cells: Differentiation to Insulin-Secreting Beta Cells,” Tissue Eng., Part A, 20(1–2), pp. 424–433. [CrossRef]
Huang, Z. M. , Zhang, Y. Z. , Kotakic, M. , and Ramakrishna, S. , 2003, “ A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites,” Compos. Sci. Technol., 63(15), pp. 2223–2253. [CrossRef]
Carlberg, B. , Axell, M. Z. , Nannmark, U. , Liu, J. , and Kuhn, H. G. , 2009, “ Electrospun Polyurethane Scaffolds for Proliferation and Neuronal Differentiation of Human Embryonic Stem Cells,” Biomed. Mater., 4(4), p. 045004. [CrossRef] [PubMed]
Smith, L. A. , Liu, X. , Hu, J. , and Ma, P. X. , 2009, “ The Influence of Three-Dimensional Nanofibrous Scaffolds on the Osteogenic Differentiation of Embryonic Stem Cells,” Biomaterials, 30(13), pp. 2516–2522. [CrossRef] [PubMed]
Smith, L. A. , Liu, X. , Hu, J. , and Ma, P. X. , 2010, “ The Enhancement of Human Embryonic Stem Cell Osteogenic Differentiation With Nano-Fibrous Scaffolding,” Biomaterials, 31(21), pp. 5526–5535. [CrossRef] [PubMed]
Lee, M. R. , Kwon, K. W. , Jung, H. , Kim, H. N. , Suh, K. Y. , Kim, K. , and Kim, K. S. , 2010, “ Direct Differentiation of Human Embryonic Stem Cells Into Selective Neurons on Nanoscale Ridge/Groove Pattern Arrays,” Biomaterials, 31(15), pp. 4360–4366. [CrossRef] [PubMed]
Friling, S. , Andersson, E. , Thompson, L. H. , Jönsson, M. E. , Hebsgaard, J. B. , Nanou, E. , Alekseenko, Z. , Marklund, U. , Kjellander, S. , Volakakis, N. , Hovatta, O. , El Manira, A. , Björklund, A. , Perlmann, T. , and Ericson, J. , 2009, “ Efficient Production of Mesencephalic Dopamine Neurons by Lmx1a Expression in Embryonic Stem Cells,” Proc. Natl. Acad. Sci. U.S.A., 106(18), pp. 7613–7618. [CrossRef] [PubMed]
Yang, F. , Cho, S. W. , Son, S. M. , Bogatyrev, S. R. , Singh, D. , Green, J. J. , Mei, Y. , Park, S. , Bhang, S. H. , Kim, B. S. , Langer, R. , and Anderson, D. G. , 2010, “ Genetic Engineering of Human Stem Cells for Enhanced Angiogenesis Using Biodegradable Polymeric Nanoparticles,” Proc. Natl. Acad. Sci. U.S.A., 107(8), pp. 3317–3322. [CrossRef] [PubMed]
Takayama, K. , Inamura, M. , Kawabata, K. , Katayama, K. , Higuchi, M. , Tashiro, K. , Nonaka, A. , Sakurai, F. , Hayakawa, T. , Furue, M. K. , and Mizuguchi, H. , 2012, “ Efficient Generation of Functional Hepatocytes From Human Embryonic Stem Cells and Induced Pluripotent Stem Cells by HNF4alpha Transduction,” Mol. Ther., 20(1), pp. 127–137. [CrossRef] [PubMed]
Minato, A. , Ise, H. , Goto, M. , and Akaike, T. , 2012, “ Cardiac Differentiation of Embryonic Stem Cells by Substrate Immobilization of Insulin-Like Growth Factor Binding Protein 4 With Elastin-Like Polypeptides,” Biomaterials, 33(2), pp. 515–523. [CrossRef] [PubMed]
Tuleuova, N. , Lee, J. Y. , Lee, J. , Ramanculov, E. , Zern, M. A. , and Revzin, A. , 2010, “ Using Growth Factor Arrays and Micropatterned Co-Cultures to Induce Hepatic Differentiation of Embryonic Stem Cells,” Biomaterials, 31(35), pp. 9221–9231. [CrossRef] [PubMed]
Lam, H. J. , Patel, S. , Wang, A. , Chu, J. , and Li, S. , 2010, “ In Vitro Regulation of Neural Differentiation and Axon Growth by Growth Factors and Bioactive Nanofibers,” Tissue Eng., Part A, 16(8), pp. 2641–2648. [CrossRef]
Duester, G. , 2008, “ Retinoic Acid Synthesis and Signaling During Early Organogenesis,” Cell, 134(6), pp. 921–931. [CrossRef] [PubMed]
Deng, X. , Chen, Y. X. , Zhang, X. , Zhang, J. P. , Yin, C. , Yue, H. Y. , Lin, Y. , Han, Z. G. , and Xie, W. F. , 2008, “ Hepatic Stellate Cells Modulate the Differentiation of Bone Marrow Mesenchymal Stem Cells Into Hepatocyte-Like Cells,” J. Cell. Physiol., 217(1), pp. 138–144. [CrossRef] [PubMed]
Lee, H. J. , Yu, C. , Chansakul, T. , Varghese, S. , Hwang, N. S. , and Elisseeff, J. H. , 2008, “ Enhanced Chondrogenic Differentiation of Embryonic Stem Cells by Co-Culture With Hepatic Cells,” Stem Cells Dev., 17(3), pp. 555–563. [CrossRef] [PubMed]
Talavera-Adame, D. , Wu, G. , He, Y. , Ng, T. T. , Gupta, A. , Kurtovic, S. , Hwang, J. Y. , Farkas, D. L. , and Dafoe, D. C. , 2011, “ Endothelial Cells in Co-Culture Enhance Embryonic Stem Cell Differentiation to Pancreatic Progenitors and Insulin-Producing Cells Through BMP Signaling,” Stem Cell Rev., 7(3), pp. 532–543. [CrossRef] [PubMed]
Ding, S. , Wu, T. Y. , Brinker, A. , Peters, E. C. , Hur, W. , Gray, N. S. , and Schultz, P. G. , 2003, “ Synthetic Small Molecules That Control Stem Cell Fate,” Proc. Natl. Acad. Sci. U.S.A., 100(13), pp. 7632–7637. [CrossRef] [PubMed]
Li, W. , Sun, W. , Zhang, Y. , Wei, W. , Ambasudhan, R. , Xia, P. , Talantova, M. , Lin, T. , Kim, J. , Wang, X. , Kim, W. R. , Lipton, S. A. , Zhang, K. , and Ding, S. , 2011, “ Rapid Induction and Long-Term Self-Renewal of Primitive Neural Precursors From Human Embryonic Stem Cells by Small Molecule Inhibitors,” Proc. Natl. Acad. Sci. U.S.A., 108(20), pp. 8299–8304. [CrossRef] [PubMed]
Ring, D. B. , Johnson, K. W. , Henriksen, E. J. , Nuss, J. M. , Goff, D. , Kinnick, T. R. , Ma, S. T. , Reeder, J. W. , Samuels, I. , Slabiak, T. , Wagman, A. S. , Hammond, M. E. , and Harrison, S. D. , 2003, “ Selective Glycogen Synthase Kinase 3 Inhibitors Potentiate Insulin Activation of Glucose Transport and Utilization In Vitro and In Vivo,” Diabetes, 52(3), pp. 588–595. [CrossRef] [PubMed]
Callahan, J. F. , Burgess, J. L. , Fornwald, J. A. , Gaster, L. M. , Harling, J. D. , Harrington, F. P. , Heer, J. , Kwon, C. , Lehr, R. , Mathur, A. , Olson, B. A. , Weinstock, J. , and Laping, N. J. , 2002, “ Identification of Novel Inhibitors of the Transforming Growth Factor Beta1 (TGF-Beta1) Type 1 Receptor (ALK5),” J. Med. Chem., 45(5), pp. 999–1001. [CrossRef] [PubMed]
Gonzalez, R. , Lee, J. W. , and Schultz, P. G. , 2011, “ Stepwise Chemically Induced Cardiomyocyte Specification of Human Embryonic Stem Cells,” Angew. Chem., Int. Ed. Engl., 50(47), pp. 11181–11185. [CrossRef]
Kraehenbuehl, T. P. , Langer, R. , and Ferreira, L. S. , 2011, “ Three-Dimensional Biomaterials for the Study of Human Pluripotent Stem Cells,” Nat. Methods, 8(9), pp. 731–736. [CrossRef] [PubMed]
Kasko, A. M. , and Wong, D. Y. , 2010, “ Two-Photon Lithography in the Future of Cell-Based Therapeutics and Regenerative Medicine: A Review of Techniques for Hydrogel Patterning and Controlled Release,” Future Med. Chem., 2(11), pp. 1669–1680. [CrossRef] [PubMed]
Lieleg, O. , and Ribbeck, K. , 2011, “ Biological Hydrogels as Selective Diffusion Barriers,” Trends Cell Biol., 21(9), pp. 543–551. [CrossRef] [PubMed]
Gerecht, S. , Burdick, J. A. , Ferreira, L. S. , Townsend, S. A. , Langer, R. , and Vunjak-Novakovic, G. , 2007, “ Hyaluronic Acid Hydrogel for Controlled Self-Renewal and Differentiation of Human Embryonic Stem Cells,” Proc. Natl. Acad. Sci. U.S.A., 104(27), pp. 11298–11303. [CrossRef] [PubMed]
Chayosumrit, M. , Tuch, B. , and Sidhu, K. , 2010, “ Alginate Microcapsule for Propagation and Directed Differentiation of Hescs to Definitive Endoderm,” Biomaterials, 31(3), pp. 505–514. [CrossRef] [PubMed]
Ng, S. L. , Narayanan, K. , Gao, S. , and Wan, A. C. , 2011, “ Lineage Restricted Progenitors for the Repopulation of Decellularized Heart,” Biomaterials, 32(30), pp. 7571–7580. [CrossRef] [PubMed]
Schussler, O. , Chachques, J. C. , Mesana, T. G. , Suuronen, E. J. , Lecarpentier, Y. , and Ruel, M. , 2010, “ 3-Dimensional Structures to Enhance Cell Therapy and Engineer Contractile Tissue,” Asian Cardiovasc. Thorac. Ann., 18(2), pp. 188–198. [CrossRef] [PubMed]
Borzacchiello, A. , Gloria, A. , Mayol, L. , Dickinson, S. , Miot, S. , Martin, I. , and Ambrosio, L. , 2011, “ Natural/Synthetic Porous Scaffold Designs and Properties for Fibro-Cartilaginous Tissue Engineering,” J. Bioact. Compat. Polym., 26(5), pp. 437–451. [CrossRef]
Liu, T. , Zhang, S. , Chen, X. , Li, G. , and Wang, Y. , 2010, “ Hepatic Differentiation of Mouse Embryonic Stem Cells in Three-Dimensional Polymer Scaffolds,” Tissue Eng., Part A, 16(4), pp. 1115–1122. [CrossRef]
Zoldan, J. , Karagiannis, E. D. , Lee, C. Y. , Anderson, D. G. , Langer, R. , and Levenberg, S. , 2011, “ The Influence of Scaffold Elasticity on Germ Layer Specification of Human Embryonic Stem Cells,” Biomaterials, 32(36), pp. 9612–9621. [CrossRef] [PubMed]
Gilbert, T. W. , Sellaro, T. L. , and Badylak, S. F. , 2006, “ Decellularization of Tissues and Organs,” Biomaterials, 27(19), pp. 3675–3683. [PubMed]
Crapo, P. M. , Gilbert, T. W. , and Badylak, S. F. , 2011, “ An Overview of Tissue and Whole Organ Decellularization Processes,” Biomaterials, 32(12), pp. 3233–3243. [CrossRef] [PubMed]
Elder, B. D. , Eleswarapu, S. V. , and Athanasiou, K. A. , 2009, “ Extraction Techniques for the Decellularization of Tissue Engineered Articular Cartilage Constructs,” Biomaterials, 30(22), pp. 3749–3756. [CrossRef] [PubMed]
Cortiella, J. , Niles, J. , Cantu, A. , Brettler, A. , Pham, A. , Vargas, G. , Winston, S. , Wang, J. , Walls, S. , and Nichols, J. E. , 2010, “ Influence of Acellular Natural Lung Matrix on Murine Embryonic Stem Cell Differentiation and Tissue Formation,” Tissue Eng., Part A, 16(8), pp. 2565–2580. [CrossRef]


Grahic Jump Location
Fig. 1

A schematic illustration of engineering approaches for tailored ESC differentiation. Top: modulation of ESC niche on 2D substrates by diverse biophysical and biochemical cues. Bottom: ESC niche modulation within 3D hydrogel, synthetic scaffolds, and decellularized scaffolds. (Reproduced with permission from Xu et al. [9]. Copyright 2013 by Springer Science+Business Media).

Grahic Jump Location
Fig. 2

Biophysical regulation of ESC fate on 2D substrate. (a) Geometrical constraint: microcontact printing (top), resulting in hESCs colonies with upregulation of endoderm marker as colonies size decreased (bottom) [5,7]; (b) cyclic strain as mechanical stimulation (top) and vascular differentiation of mESC (bottom) [15,16]; (c) matrix stiffness of the polymeric substrate: cell morphology regulated by substrate stiffness (top) and preferable osteogenic differentiation of mESCs on stiffer substrate [17,18]; (d) nanoscale structures fabricated by electrospun nanofibers (left), which was used to induce hESC neuronal differentiation (right) [19,20]. (Reproduced with permission from Xu et al. [9]. Copyright 2013 by Springer Science+Business Media).

Grahic Jump Location
Fig. 3

Biochemical strategies for ESC regulation on 2D substrate. (a) Protocol (top) and dynamic morphogenesis (bottom) during ESC-derived hepatic differentiation [46]. SOX17, HEX, and HNF4α transfected ESCs; (b) left: suppression of Wnt/β-catenin signaling pathway with soluble and substrate-immobilized IGFBP4 [47]. Right: improved cardiac differentiation of ESC according to MF20 (anti-α myosin heavy chain) staining; (c) left: micropatterned coculture of mESC and stellate cells for induction to hepatic lineage [48]. Right: stronger intracellular alpha fetoprotein (hepatocyte marker) of mESC expression in cocultures as compared to monoculture, suggesting improved differentiation efficiency. (Reproduced with permission from Xu et al. [9]. Copyright 2013 by Springer Science+Business Media).

Grahic Jump Location
Fig. 4

ESC differentiation regulated by 3D culture configuration. (a) Images (left) and live/dead staining (right) of hESCs cultured in 3D alginate microcapsules [63]. (Middle) Suppression of NANOG (pluripotent marker) and upregulation of SOX17 and FOXA2 (hepatocyte markers) on day 10; (b) left: scanning electronic microscopy images (pseudocolored) of hESCs within electrospun PU nanofibers (5000X magnification) [40]. Middle: distribution of pore diameter of PU scaffolds peaks at 5–6 and 1 μm. Right: hESC-derived neurons after 47 days cultured indicated by upregulated MAP2ab (mature neural marker); (c) Left: decellularization and reseeding for cardiac tissue engineering [64]. Right: immunostaining detection of CD31 (endothelial marker, green) on the reseeded decellularized heart sections with hESC-derived cells. (Reproduced with permission from Xu et al. [9]. Copyright 2013 by Springer Science+Business Media).



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In