Abstract

The interactions with human drivers is one of the major challenges for autonomous vehicles. In this study, we consider urban crossroads without signals where driver interactions are indispensable. Crossroads are parameterized to be used in studying how drivers pass the crossroad while maintaining a desired speed without collision. We define a probability of yielding for each car as a function of vehicle speed and the distance-to-intersection for both vehicles, while the interactions between vehicles are characterized by a point of action for incoming vehicles from different directions. Driver behaviors in terms of acceleration/deceleration given current circumstances are also modeled probabilistically. The method is then analyzed and validated by data collected from human drivers in the simulated environments. The result shows comparable prediction accuracy to the state-of-the-art method, where characteristic parameters of drivers are also shown to be critical for the behavior predictions. We also extend our model to two real-world urban crossroads applications : crash analysis and traffic characteristic parameters identification. In both cases, our prediction results are analogous to those acquired in virtual environments. For autonomous vehicle, our method can help building a computer-driving logic that matches human behaviors, such that interactions between different drivers will be more intuitive.

References

1.
Thrun
,
S.
,
Montemerlo
,
M.
,
Dahlkamp
,
H.
,
Stavens
,
D.
,
Aron
,
A.
,
Diebel
,
J.
,
Fong
,
P.
,
Gale
,
J.
,
Halpenny
,
M.
,
Hoffmann
,
G.
,
Lau
,
K.
,
Oakley
,
C.
,
Palatucci
,
M.
,
Pratt
,
V.
,
Stang
,
P.
,
Strohband
,
S.
,
Dupont
,
C.
,
Jendrossek
,
L. K.
,
Koelen
,
C.
,
Markey
,
C.
,
Rummel
,
C.
,
van Niekerk
,
J.
,
Jensen
,
E.
,
Alessandrini
,
P.
,
Bradski
,
G.
,
Davies
,
B.
,
Ettinger
,
S.
,
Kaehler
,
A.
,
Nefian
,
A.
, and
Mahoney
,
P.
,
2006
, “
Stanley: The Robot That Won the Darpa Grand Challenge
,”
J. Field Rob.
,
23
(
9
), pp.
661
692
. 10.1002/rob.20147
2.
Walker
,
J.
, and
Johnson
,
C.
,
2016
, “
Peak Car Ownership: The Market Opportunity of Electric Automated Mobility Services
,”
Technical Report
, Rocky Mountain Institute, http://www.rmi.org/peak_car_ownership
3.
California Department of Motor Vehicles
,
2019
, “
Report of Traffic Collision Involving an Autonomous Vehicle (OL 316)
.”
4.
Bansal
,
P.
, and
Kockelman
,
K.
,
2017
, “
Forecasting Americans’ Long-Term Adoption of Connected and Autonomous Vehicle Technologies
,”
Transp. Res. Part A: Pol. Pract.
,
95
, pp.
49
63
. 10.1016/j.tra.2016.10.013
5.
U. S. Department of Transportation
,
2018
, “
Preparing for the Future of Transportation: Automated Vehicles 3.0 (AV 3.0)
,”
Technical Report
.
6.
Dresner
,
K.
, and
Stone
,
P.
,
2007
, “
Sharing the Road: Autonomous Vehicles Meet Human Drivers
,”
Proceedings of the 20th International Joint Conference on Artificial Intelligence
,
Hyderabad, India
,
Jan. 6–12
, pp.
1263
1268
.
7.
Guler
,
S. I.
,
Menendez
,
M.
, and
Meier
,
L.
,
2014
, “
Using Connected Vehicle Technology to Improve the Efficiency of Intersections
,”
Transp. Res. Part C: Emerg. Technol.
,
46
, pp.
121
131
. 10.1016/j.trc.2014.05.008
8.
Milakis
,
D.
,
Snelder
,
M.
,
Arem
,
B.
,
Wee
,
B.
, and
Homem de Almeida Correia
,
G.
,
2017
, “
Development and Transport Implications of Automated Vehicles in the Netherlands: Scenarios for 2030 and 2050
,”
Eur. J. Transp. Infrastruct. Res.
,
17
(
1
). pp.
63
85
.
9.
Millard-Ball
,
A.
,
2019
, “
The Autonomous Vehicle Parking Problem
,”
Transp. Pol.
,
75
, pp.
99
108
. 10.1016/j.tranpol.2019.01.003
10.
Litman
,
T.
,
2015
, “
Autonomous Vehicle Implementation Predictions: Implications for Transport Planning
,”
Victoria Transport Policy Institute
,
Victoria, BC, Canada
,
Technical Report
.
11.
Coelingh
,
E.
,
Eidehall
,
A.
, and
Bengtsson
,
M.
,
2010
, “
Collision Warning With Full Auto Brake and Pedestrian Detection—A Practical Example of Automatic Emergency Braking
,”
13th International IEEE Conference on Intelligent Transportation Systems (ITSC 2010)
,
Funchal, Madeira Island, Portugal
,
Sept. 19–22
, pp.
155
160
.
12.
Bonnin
,
S.
,
Weisswange
,
T. H.
,
Kummert
,
F.
, and
Schmuedderich
,
J.
,
2014
, “
Pedestrian Crossing Prediction Using Multiple Context-Based Models
,”
17th International IEEE Conference on Intelligent Transportation Systems (ITSC)
,
Qingdao, China
,
Oct. 8–11
, pp.
378
385
.
13.
Schneemann
,
F.
, and
Heinemann
,
P.
,
2016
, “
Context-Based Detection of Pedestrian Crossing Intention for Autonomous Driving in Urban Environments
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
2243
2248
.
14.
Hashimoto
,
Y.
,
Gu
,
Y.
,
Hsu
,
L. T.
,
Iryo-Asano
,
M.
, and
Kamijo
,
S.
,
2016
, “
A Probabilistic Model of Pedestrian Crossing Behavior at Signalized Intersections for Connected Vehicles
,”
Transp. Res. Part C: Emerg. Technol.
,
71
, pp.
164
181
. 10.1016/j.trc.2016.07.011
15.
Ramyar
,
S.
,
Sefidmazgi
,
M. G.
,
Amsalu
,
S.
,
Anzagira
,
A.
,
Homaifar
,
A.
,
Karimoddini
,
A.
, and
Kurt
,
A.
,
2015
, “
Modeling Driver Behavior at Intersections With Takagi-Sugeno Fuzzy Models
,”
2015 IEEE 18th International Conference on Intelligent Transportation Systems
,
Las Palmas de Gran Canaria, Spain
,
Sept. 15–18
, pp.
2378
2383
.
16.
Gadepally
,
V.
,
Krishnamurthy
,
A.
, and
Ozguner
,
U.
,
2014
, “
A Framework for Estimating Driver Decisions Near Intersections
,”
IEEE Trans. Intell. Transp. Syst.
,
15
(
2
), pp.
637
646
. 10.1109/TITS.2013.2285159
17.
Paden
,
B.
,
Čáp
,
M.
,
Yong
,
S. Z.
,
Yershov
,
D.
, and
Frazzoli
,
E.
,
2016
, “
A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles
,”
IEEE Trans. Intell. Veh.
,
1
(
1
), pp.
33
55
. 10.1109/TIV.2016.2578706
18.
Lefèvre
,
S.
,
Vasquez
,
D.
, and
Laugier
,
C.
,
2014
, “
A Survey on Motion Prediction and Risk Assessment for Intelligent Vehicles
,”
Robomech J.
,
1
(
1
), pp.
1
14
. 10.1186/s40648-014-0001-z
19.
Ammoun
,
S.
, and
Nashashibi
,
F.
,
2009
, “
Real Time Trajectory Prediction for Collision Risk Estimation Between Vehicles
,”
2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing (ICCP 2009)
,
Cluj-Napoca, Romania
,
Aug. 27–29
, pp.
417
422
.
20.
Fiorini
,
P.
, and
Shiller
,
Z.
,
1998
, “
Motion Planning in Dynamic Environments Using Velocity Obstacles
,”
Int. J. Rob. Res.
,
17
(
7
), pp.
760
772
. 10.1177/027836499801700706
21.
Zhan
,
W.
,
Liu
,
C.
,
Chan
,
C.
, and
Tomizuka
,
M.
,
2016
, “
A Non-Conservatively Defensive Strategy for Urban Autonomous Driving
,”
2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC)
,
Rio de Janeiro, Brazil
,
Nov. 1–4
, pp.
459
464
.
22.
Ruf
,
M.
,
Ziehn
,
J.
,
Rosenhahn
,
B.
,
Beyerer
,
J.
,
Willersinn
,
D.
, and
Gotzig
,
H.
,
2014
, “
Situation Prediction and Reaction Control (SPARC)
,”
9th Workshop Fahrerassistenzsysteme (FAS 2014)
,
B.
Färber
,
K.
Dietmayer
,
K.
Bengler
,
M.
Maurer
,
C.
Stiller
, and
H.
Winner
, eds.,
Walting im Altmühltal
,
Germany
, pp.
55
66
.
23.
Lefèvre
,
S.
,
Laugier
,
C.
, and
Ibañez-Guzmán
,
J.
,
2012
, “
Evaluating Risk at Road Intersections by Detecting Conflicting Intentions
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
4841
4846
.
24.
Dagli
,
I.
,
Brost
,
M.
, and
Breuel
,
G.
,
2003
, “Action Recognition and Prediction for Driver Assistance Systems Using Dynamic Belief Networks,”
Agent Technologies, Infrastructures, Tools, and Applications for E-Services
,
J. G.
Carbonell
,
J.
Siekmann
,
R.
Kowalczyk
,
J. P.
Müller
,
H.
Tianfield
, and
R.
Unland
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
179
194
.
25.
Gindele
,
T.
,
Brechtel
,
S.
, and
Dillmann
,
R.
,
2013
, “
Learning Context Sensitive Behavior Models From Observations for Predicting Traffic Situations
,”
16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)
,
Kurhaus, The Hague, The Netherlands
,
Oct. 6–9
, pp.
1764
1771
.
26.
Foka
,
A.
, and
Trahanias
,
P.
,
2010
, “
Probabilistic Autonomous Robot Navigation in Dynamic Environments With Human Motion Prediction
,”
Int. J. Social Rob.
,
2
(
1
), pp.
79
94
. 10.1007/s12369-009-0037-z
27.
Hubmann
,
C.
,
Schulz
,
J.
,
Becker
,
M.
,
Althoff
,
D.
, and
Stiller
,
C.
,
2018
, “
Automated Driving in Uncertain Environments: Planning With Interaction and Uncertain Maneuver Prediction
,”
IEEE Trans. Intell. Veh.
,
3
(
1
), pp.
5
17
. 10.1109/TIV.2017.2788208
28.
Liebner
,
M.
,
Baumann
,
M.
,
Klanner
,
F.
, and
Stiller
,
C.
,
2012
, “
Driver Intent Inference at Urban Intersections Using the Intelligent Driver Model
,” 2012 IEEE Intelligent Vehicles Symposium, pp.
1162
1167
.
29.
Graf
,
R.
,
Deusch
,
H.
,
Seeliger
,
F.
,
Fritzsche
,
M.
, and
Dietmayer
,
K.
,
2014
, “
A Learning Concept for Behavior Prediction At Intersections
,” 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp.
939
945
.
30.
Kemeny
,
A.
, and
Panerai
,
F.
,
2003
, “
Evaluating Perception in Driving Simulation Experiments
,”
Trends Cognit. Sci.
,
7
(
1
), pp.
31
37
. 10.1016/S1364-6613(02)00011-6
31.
Caird
,
J.
, and
Hancock
,
P.
,
1994
, “
The Perception of Arrival Time for Different Oncoming Vehicles at an Intersection
,”
Ecol. Psychol.
,
6
(
2
), pp.
83
109
. 10.1207/s15326969eco0602_1
32.
Hayward
,
J.
,
1972
, “
Near Miss Determination Through Use of a Scale of Danger
,”
Report No. TTSC-7115
, Pennsylvania Transportation and Traffic Safety Center, PA.
33.
Winsum
,
W.
, and
Brouwer
,
W.
,
1997
, “
Time Headway in Car Following and Operational Performance During Unexpected Braking
,”
Perceptual Motor Skills
,
84
(
3 Suppl
), pp.
1247
1257
.
PMID: 9229443
. 10.2466/pms.1997.84.3c.1247
You do not currently have access to this content.