Abstract

Achieving human-level driving performance in complex environments remains a major challenge in the field of deep learning (DL)-based end-to-end autonomous driving systems (ADS). In ADS, generalization to rare edge cases poses a serious safety concern with DL-based models. The leading solution to this problem is the construction of larger models and datasets, an approach known as scaling. However, limitations in the computational power available to autonomous vehicles, coupled with the under-representation of safety-critical edge cases in large autonomous driving datasets, raise questions over the suitability of scaling for ADS. In this work, we investigate the performance of an alternate, computationally less-demanding, machine learning (ML) algorithm, hierarchical temporal memory (HTM). Existing HTM models use rudimentary encoding schemes that have thus far limited their application to simple inputs. Motivated by this shortcoming, we first propose a bespoke convolutional neural network (CNN)-based encoding scheme suited to the input data used in ADS. We then integrate this encoding scheme into a novel DL-HTM end-to-end ADS. The proposed DL-HTM-based end-to-end ADS is trained and evaluated against a conventional DL end-to-end ADS based on the widely used AlexNet model from the literature. Our evaluation results show that the proposed DL-HTM model achieves comparable performance with far fewer trainable parameters than the conventional DL-based end-to-end ADS. Results also indicate that the proposed model demonstrates a superior capacity for learning underrepresented classes, i.e., edge cases, in the dataset.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Rushe
,
D.
,
2021
, “
Tesla’s Autopilot Faces Us Investigation After Crashes With Emergency Vehicles
,”
The Guardian, Aug.
2.
Helmore
,
E.
,
2022
, “
Tesla Behind Eight-Vehicle Crash Was in ‘Full Self-Driving’ Mode, Says Driver
,”
The Guardian, Dec.
3.
Baker
,
D.
,
2018
, “
After Uber Accident, Fewer People Want Self-Driving Cars
,”
San Francisco Chronicle, Aug.
4.
Lu
,
Y.
,
2023
, “
Driverless Taxis Blocked Ambulance in Fatal Accident
,”
San Francisco Fire Dept. Says, New York Times.
5.
Hestness
,
J.
,
Narang
,
S.
,
Ardalani
,
N.
,
Diamos
,
G.
,
Jun
,
H.
,
Kianinejad
,
H.
,
Patwary
,
M. M. A.
,
Yang
,
Y.
, and
Zhou
,
Y.
,
2017
, “
Deep Learning Scaling Is Predictable, Empirically
,”
Preprint
arXiv:1712.00409.
6.
Hawkins
,
J.
, and
Blakeslee
,
S.
,
2004
,
On Intelligence
,
Macmillan
,
New York
.
7.
Hawkins
,
J.
,
Subutai
,
A.
, and
Dubinsky
,
D.
,
2010
, “Hierarchical Temporal Memory Including HTM Cortical Learning Algorithms,” Technical Report,
Numenta
,
Redwood City
.
8.
Zyarah
,
A. M.
, and
Kudithipudi
,
D.
,
2019
, “
Neuromorphic Architecture for the Hierarchical Temporal Memory
,”
IEEE Trans. Emerg. Top. Comput. Intell.
,
3
(
1
), pp.
4
14
.
9.
Otahal
,
M.
,
Keeney
,
D.
, and
McDougall
,
D.
,
2019
, “
HTM.core Implementation ofQ10 Hierarchical Temporal Memory
,” https://github.com/htm-community/htm.core/, Accessed September 1, 2023.
10.
Bamaqa
,
A.
,
Sedky
,
M.
,
Bosakowski
,
T.
, and
Bastaki
,
B. B.
,
2020
, “
Anomaly Detection Using Hierarchical Temporal Memory (HTM) in Crowd Management
,”
Proceedings of the 2020 4th International Conference on Cloud and Big Data Computing
,
Virtual, UK
,
Aug. 26–28
, pp.
37
42
.
11.
Sousa
,
R.
,
Lima
,
T.
,
Abelha
,
A.
, and
Machado
,
J.
,
2021
, “
Hierarchical Temporal Memory Theory Approach to Stock Market Time Series Forecasting
,”
Electronics
,
10
(
14
), p.
1630
.
12.
Luo
,
J.
, and
Tjahjadi
,
T.
,
2020
, “
Gait Recognition and Understanding Based on Hierarchical Temporal Memory Using 3D Gait Semantic Folding
,”
Sensors
,
20
(
6
), p.
1646
.
13.
Sanati
,
S.
,
Rouhani
,
M.
, and
Hodtani
,
G. A.
,
2024
, “
Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures
,”
Neur. Process. Lett.
,
56
(
44
).
14.
Deng
,
L.
,
2012
, “
The Mnist Database of Handwritten Digit Images for Machine Learning Research
,”
IEEE Signal Process. Mag.
,
29
(
6
), pp.
141
142
.
15.
Padilla
,
D. E.
,
Brinkworth
,
R.
, and
McDonnell
,
M. D.
,
2013
, “
Performance of a Hierarchical Temporal Memory Network in Noisy Sequence Learning
,”
2013 IEEE International Conference on Computational Intelligence and Cybernetics
,
Yogyakarta, Indonesia
,
Dec. 3–4
, IEEE, pp.
45
51
.
16.
Liu
,
X.
,
Huang
,
Y.
,
Zeng
,
Z.
, and
Wunsch
,
D. C.
,
2020
, “
Memristor-Based HTM Spatial Pooler With On-Device Learning for Pattern Recognition
,”
IEEE Trans. Syst., Man, Cybernetics: Syst.
,
52
(
3
), pp.
1901
1915
. .
17.
Xiao
,
H.
,
Rasul
,
K.
, and
Vollgraf
,
R.
,
2017
, “
Fashion-mnist: A Novel Image Dataset for Benchmarking Machine Learning Algorithms
,”
Preprint
arXiv:1708.07747.
18.
Krizhevsky
,
A.
, and
Hinton
,
G.
,
2009
, “
Learning Multiple Layers of Features From Tiny Images
,”
Technical Report
,
University of Toronto
,
Toronto, ON
.
19.
Xu
,
H.
,
Gao
,
Y.
,
Yu
,
F.
, and
Darrell
,
T.
,
2017
, “
End-to-End Learning of Driving Models From Large-Scale Video Datasets
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
2174
2182
.
20.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
Imagenet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
21.
Udacity
,
2021
, “
Udacity Self-Driving Car Driving
,” Challenge 2, https://github.com/udacity/self-driving-car, Accessed April 15, 2021.
22.
Le Mero
,
L.
,
Yi
,
D.
,
Dianati
,
M.
, and
Mouzakitis
,
A.
,
2022
, “
A Survey on Imitation Learning Techniques for End-to-End Autonomous Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
9
), pp.
14128
14147
.
23.
Muller
,
U.
,
Ben
,
J.
,
Cosatto
,
E.
,
Flepp
,
B.
, and
Cun
,
Y.
,
2005
, “
Off-Road Obstacle Avoidance Through End-to-End Learning
,”
Advances in Neural Information Processing Systems 18: Proceedings of the 2005 Conference
,
Vancouver, British Columbia, Canada
,
Dec. 5–8
.
24.
Weliky
,
M.
,
Fiser
,
J.
,
Hunt
,
R. H.
, and
Wagner
,
D. N.
,
2003
, “
Coding of Natural Scenes in Primary Visual Cortex
,”
Neuron
,
37
(
4
), pp.
703
718
.
25.
Hromádka
,
T.
,
DeWeese
,
M. R.
, and
Zador
,
A. M.
,
2008
, “
Sparse Representation of Sounds in the Unanesthetized Auditory Cortex
,”
PLoS Biol.
,
6
(
1
), p.
e16
.
26.
Ahmad
,
S.
, and
Hawkins
,
J.
,
2015
, “
Properties of Sparse Distributed Representations and Their Application to Hierarchical Temporal Memory
,” Preprint arXiv:1503.07469.
27.
Mayer
,
M. L.
,
Westbrook
,
G. L.
, and
Guthrie
,
P. B.
,
1984
, “
Voltage-Dependent Block by Mg 2+ of NMDA Responses in Spinal Cord Neurones
,”
Nature
,
309
(
5965
), pp.
261
263
.
28.
Kelley
,
H. J.
,
1960
, “
Gradient Theory of Optimal Flight Paths
,”
Ars J.
,
30
(
10
), pp.
947
954
.
29.
Ruder
,
S.
,
2016
, “An Overview of Gradient Descent Optimization Algorithms,” Preprint arXiv:1609.04747.
30.
Deng
,
J.
,
Dong
,
W.
,
Socher
,
R.
,
Li
,
L.-J.
,
Li
,
K.
, and
Fei-Fei
,
L.
,
2009
, “
Imagenet: A Large-Scale Hierarchical Image Database
,”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
,
Miami Beach, FL
,
June 20–25
, IEEE, pp.
248
255
.
31.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
, et al
,
2019
, “
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,”
Advances in Neural Information Processing Systems 32 (NeurIPS 2019)
,
Vancouver, BC, Canada
,
Dec. 8–14
.
32.
Hawkins
,
J.
,
Ahmad
,
S.
,
Purdy
,
S.
, and
Lavin
,
A.
,
2016
, Biological and Machine Intelligence (BaMI). Release 0.4, https://numenta.com/resources/biological-and-machine-intelligence/, Accessed July14, 2021.
33.
Zhang
,
R.
,
Isola
,
P.
, and
Efros
,
A. A.
,
2016
, “
Colorful Image Colorization
,”
Computer Vision–ECCV 2016: 14th European Conference
,
Amsterdam, The Netherlands
,
Oct. 11–14
.
34.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” Preprint arXiv:1412.6980.
35.
Wu
,
J.
,
Zeng
,
W.
, and
Yan
,
F.
,
2018
, “
Hierarchical Temporal Memory Method for Time-Series-Based Anomaly Detection
,”
Neurocomputing
,
273
, pp.
535
546
.
36.
Anandharaj
,
A.
, and
Sivakumar
,
P. B.
,
2019
, “
Anomaly Detection in Time Series Data Using Hierarchical Temporal Memory Model
,”
3rd International conference of Electronics, Communication and Aerospace Technology (ICECA)
,
Coimbatore, India
,
June 12–14
, IEEE, pp.
1287
1292
.
37.
Barua
,
A.
,
Muthirayan
,
D.
,
Khargonekar
,
P. P.
, and
Al Faruque
,
M. A.
,
2020
, “
Hierarchical Temporal Memory Based One-Pass Learning for Real-Time Anomaly Detection and Simultaneous Data Prediction in Smart Grids
,”
IEEE Trans. Dependable Secure Comput.
,
273
, pp.
535
546
.
You do not currently have access to this content.