Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper presents a study of how communication ranges influence the performance of a new decentralized control method for swarms of autonomously navigating ground vehicles that uses a blended leader–follower/artificial potential field approach. While teams of autonomous ground vehicles (AGVs) that can navigate autonomously through off-road terrain have a variety of potential uses, it may be difficult to control the team in low-infrastructure environments that lack long-range radio communications capabilities. In this work, we propose a novel decentralized swarm control algorithm that combines the potential field planning method with the leader–follower (LF) control algorithm and biologically inspired inter-robot interactions to effectively control the navigation of a team of AGV (swarm) through rough terrain using only a single lead vehicle. We use simulated experimentation to demonstrate the robustness of this approach using only point-to-point wireless communication with realistic communication ranges. Furthermore, we analyze the range requirements of the communication network as the number in the swarm increases. We find that wireless communication range must increase as the number of agents in the swarm increases in order to effectively control the swarm. Our analysis showed that mission success decreased by 40% when the communication range was reduced from 100 m to 200 m, with the exact reduction also depending on the number of vehicles.

References

1.
Daily
,
M.
,
Medasani
,
S.
,
Behringer
,
R.
, and
Trivedi
,
M.
,
2017
, “
Self-driving Cars
,”
Computer
,
50
(
12
), pp.
18
23
.
2.
Badue
,
C.
,
Guidolini
,
R.
,
Carneiro
,
R. V.
,
Azevedo
,
P.
,
Cardoso
,
V. B.
,
Forechi
,
A.
,
Jesus
,
L.
,
Berriel
,
R.
,
Paixão
,
T. M.
, and
Mutz
,
F.
,
2020
, “
Self-driving Cars: A Survey
,”
Exp. Syst. Appl.
,
165
(
1
), p.
113816
.
3.
Kelly
,
A.
,
Stentz
,
A.
,
Amidi
,
O.
,
Bode
,
M.
,
Bradley
,
D.
,
Diaz-Calderon
,
A.
,
Happold
,
M.
,
Herman
,
H.
,
Mandelbaum
,
R.
, and
Pilarski
,
T.
,
2006
, “
Toward Reliable Off Road Autonomous Vehicles Operating in Challenging Environments
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
449
483
.
4.
Arnold
,
R.
,
Carey
,
K.
,
Abruzzo
,
B.
, and
Korpela
,
C.
,
2019
, “
What Is a Robot Swarm: A Definition for Swarming Robotics
,”
2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)
,
New York
,
Oct. 10–12
, IEEE, pp.
0074
0081
.
5.
Sharkey
,
A. J.
,
2006
, “
Robots, Insects and Swarm Intelligence
,”
Artif. Intell. Rev.
,
26
(
1
), pp.
255
268
.
6.
Goodin
,
C.
,
Prevost
,
Z.
, and
Lemasson
,
B.
,
2015
, “
Simulation of Biologically-Inspired Control Algorithms for Teams of Ground Vehicles
,”
Conference on Autonomous and Robotic Construction of Infrastructure
,
Ames, IA
, p.
105
.
7.
Kolling
,
A.
,
Walker
,
P.
,
Chakraborty
,
N.
,
Sycara
,
K.
, and
Lewis
,
M.
,
2015
, “
Human Interaction With Robot Swarms: A Survey
,”
IEEE Trans. Human–Mach. Syst.
,
46
(
1
), pp.
9
26
.
8.
Rohrig
,
C.
, and
Telle
,
L.
,
2011
, “
Real-Time Communication and Localization for a Swarm of Mobile Robots Using IEEE 802.15. 4A CSS
,”
2011 IEEE Vehicular Technology Conference (VTC Fall)
,
San Francisco, CA
,
Sept. 5–8
, IEEE, pp.
1
5
.
9.
Lemasson
,
B. H.
,
Anderson
,
J. J.
, and
Goodwin
,
R. A.
,
2013
, “
Motion-Guided Attention Promotes Adaptive Communications During Social Navigation
,”
Proc. R. Soc. B: Biol. Sci.
,
280
(
1754
), p.
20122003
.
10.
Hudson
,
C.
,
Goodin
,
C.
,
Miller
,
Z.
,
Wheeler
,
W.
, and
Carruth
,
D.
,
2020
, “
Mississippi State University Autonomous Vehicle Simulation Library
,”
Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
,
Novi, MI
,
Aug. 10–12
, pp.
11
13
.
11.
Liu
,
Y.
, and
Passino
,
K. M.
,
2000
, “
Swarm Intelligence: Literature Overview
,”
Tech. Rep.
,
The Ohio State University
.
12.
Masar
,
M.
,
2013
, “
A Biologically Inspired Swarm Robot Coordination Algorithm for Exploration and Surveillance
,”
2013 IEEE 17th International Conference on Intelligent Engineering Systems (INES)
,
San Jose, Costa Rica
,
June 19–21
, IEEE, pp.
271
275
.
13.
Parker
,
L. E.
,
2000
, “
Current State of the Art in Distributed Autonomous Mobile Robotics
,”
Distributed Auton. Rob. Syst.
,
4
(
1
), pp.
3
12
.
14.
Barnes
,
L.
,
Fields
,
M.
, and
Valavanis
,
K.
,
2007
, “
Unmanned Ground Vehicle Swarm Formation Control Using Potential Fields
,”
2007 Mediterranean Conference on Control & Automation
,
Athens, Greece
,
June 27–29
, IEEE, pp.
1
8
.
15.
Burgard
,
W.
,
Moors
,
M.
,
Fox
,
D.
,
Simmons
,
R.
, and
Thrun
,
S.
,
2000
, “
Collaborative Multi-robot Exploration
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
,
San Francisco, CA
,
Apr. 24–28
, Vol. 1, IEEE, pp.
476
481
.
16.
Burgard
,
W.
,
Moors
,
M.
,
Stachniss
,
C.
, and
Schneider
,
F. E.
,
2005
, “
Coordinated Multi-robot Exploration
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
376
386
.
17.
Simmons
,
R.
,
Apfelbaum
,
D.
,
Burgard
,
W.
,
Fox
,
D.
,
Moors
,
M.
,
Thrun
,
S.
, and
Younes
,
H.
,
2000
, “
Coordination for Multi-robot Exploration and Mapping
,”
AAAI/IAAI
,
Austin, TX
, pp.
852
858
.
18.
Thrun
,
S.
,
Burgard
,
W.
, and
Fox
,
D.
,
2000
, “
A Real-Time Algorithm for Mobile Robot Mapping With Applications to Multi-Robot and 3d Mapping
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
,
San Francisco, CA
,
Apr. 24–28
, Vol. 1, IEEE, pp.
321
328
.
19.
Ko
,
J.
,
Stewart
,
B.
,
Fox
,
D.
,
Konolige
,
K.
, and
Limketkai
,
B.
,
2003
, “
A Practical, Decision-Theoretic Approach to Multi-robot Mapping and Exploration
,”
Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)
,
Las Vegas, NV
, Vol. 4, IEEE, pp.
3232
3238
.
20.
Howard
,
A.
,
2004
, “
Multi-robot Mapping Using Manifold Representations
,”
IEEE International Conference on Robotics and Automation, 2004. Proceedings
,
New Orleans, LA
, Vol. 4, IEEE, pp.
4198
4203
.
21.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
Proceedings of the Sixth International Symposium on Micro-machine and Human Science, MHS’95
,
Nagoya, Japan
,
Oct. 4–6
, IEEE, pp.
39
43
.
22.
Hereford
,
J. M.
, and
Siebold
,
M. A.
,
2010
, “
Bio-inspired Search Strategies for Robot Swarms
,”
Swarm Robotics, From Biology to Robotics
,
Alicante, Spain
, pp.
1
27
.
23.
Masár
,
M.
, and
Zelenka
,
J.
,
2012
, “
Modification of PSO Algorithm for the Purpose of Space Exploration
,”
2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES)
,
Lisbon, Portugal
,
June 13–15
, IEEE, pp.
51
54
.
24.
Mabrouk
,
M.
, and
McInnes
,
C.
,
2007
, “
Swarm Robot Social Potential Fields With Internal Agent Dynamics
,”
12th International Conference on Aerospace Sciences and Aviation Technology, ASAT-12
,
Cairo, Egypt
.
25.
Dunbar
,
T. W.
, and
Esposito
,
J. M.
,
2005
, “
Artificial Potential Field Controllers for Robust Communications in a Network of Swarm Robots
,”
Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005, SSST’05
,
Tuskeegee, AL
, IEEE, pp.
401
405
.
26.
Elkilany
,
B. G.
,
Abouelsoud
,
A.
, and
Fathelbab
,
A. M.
,
2017
, “
Adaptive Formation Control of Robot Swarms Using Optimized Potential Field Method
,”
2017 IEEE International Conference on Industrial Technology (ICIT)
,
Toronto, Canada
,
Mar. 22–25
, IEEE, pp.
721
725
.
27.
Reynolds
,
C. W.
,
1987
, “
Flocks, Herds and Schools: A Distributed Behavioral Model
,”
SIGGRAPH
,
New York
.
28.
Dorigo
,
M.
,
Birattari
,
M.
, and
Stutzle
,
T.
,
2006
, “
Ant Colony Optimization
,”
IEEE Comput. Intell. Mag.
,
1
(
4
), pp.
28
39
.
29.
Ward
,
C. R.
,
Gobet
,
F.
, and
Kendall
,
G.
,
2001
, “
Evolving Collective Behavior in an Artificial Ecology
,”
Artif. Life
,
7
(
2
), pp.
191
209
.
30.
Mississippi State University
,
2018
, https://www.hpc.msstate.edu/computing/.
31.
Goodin
,
C.
,
Cagle
,
L.
,
Henley
,
G.
,
Fereday
,
R.
,
Carrillo
,
J.
,
Song
,
P.
, and
McInnis
,
D.
,
2022
, “
Evaluating Tradeoffs for Swarm Reconnaissance With Autonomous Ground Vehicles
,”
ASME J. Auton. Veh. Syst.
,
2
(
1
), p.
011002
.
32.
Das
,
A. K.
,
Fierro
,
R.
,
Kumar
,
V.
,
Ostrowski
,
J. P.
,
Spletzer
,
J.
, and
Taylor
,
C. J.
,
2002
, “
A Vision-Based Formation Control Framework
,”
IEEE Trans. Rob. Autom.
,
18
(
5
), pp.
813
825
.
33.
Penghao
,
W.
, and
Zhiyong
,
G.
,
2016
, “
Leader–Follower Formation Control of Multi-robot Systems Using the Dynamic Surface Approach
,”
2016 35th Chinese Control Conference (CCC)
,
Nadi, Fiji
, IEEE, pp.
7757
7762
.
34.
Dehghani
,
M. A.
,
Menhaj
,
M. B.
, and
Azimi
,
M.
,
2016
, “
Leader–Follower Formation Control Using an Onboard Leader Tracker
,”
2016 4th International Conference on Control, Instrumentation, and Automation (ICCIA)
,
Guilin, China
, IEEE, pp.
99
104
.
35.
Miah
,
M. S.
,
2018
, “
Leader–Follower Localization and Mapping Using Range-Only Measurements
,”
IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society
,
Washington, DC
, IEEE, pp.
2570
2575
.
36.
Tutuko
,
B.
,
Nurmaini
,
S.
, and
Fitriana
,
G. F.
,
2017
, “
Tracking Control Enhancement on Non-holonomic Leader–Follower Robot
,”
2017 International Conference on Electrical Engineering and Computer Science (ICECOS)
,
Palembang, Indonesia
,
Aug. 22–23
, pp.
83
86
.
37.
Mendel
,
J. M.
,
2013
, “
General Type-2 Fuzzy Logic Systems Made Simple: A Tutorial
,”
IEEE Trans. Fuzzy Syst.
,
22
(
5
), pp.
1162
1182
.
38.
Quigley
,
M.
,
Conley
,
K.
,
Gerkey
,
B.
,
Faust
,
J.
,
Foote
,
T.
,
Leibs
,
J.
,
Wheeler
,
R.
, and
Ng
,
A. Y.
,
2009
, “
Ros: An Open-Source Robot Operating System
,”
ICRA Workshop on Open Source Software
,
Kobe, Japan
,
May 12
, p.
5
.
39.
de Souza Neto
,
A. M.
, and
Romero
,
R. A. F.
,
2019
, “
A Decentralized Approach to Drone Formation Based on Leader–Follower Technique
,”
2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE)
,
Rio Grande, Brazil
, IEEE, pp.
358
362
.
40.
Zhang
,
X.
,
Ma
,
H.
, and
Wang
,
J.
,
2017
, “
Decentralized Adaptive Control of a Class of Discrete-Time Nonlinear Hidden-Leader Follower Multi-agent Systems
,”
36th Chinese Control Conference (CCC)
,
Chongqing, China
,
June 26–28
, IEEE, pp.
3593
3598
.
41.
Xia
,
Y.
,
Zheng
,
Y.
,
Wang
,
X.
,
Zhang
,
L.
, and
Wang
,
L.
,
2021
, “
Research on Path Planning Algorithm of Service Robot in Dynamic Environment
,”
2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM)
,
Manchester, UK
, IEEE, pp.
478
485
.
42.
Siegwart
,
R.
,
Nourbakhsh
,
I. R.
, and
Scaramuzza
,
D.
,
2011
,
Introduction to Autonomous Mobile Robots
,
MIT Press
,
Cambridge, MA
.
43.
Zamirian
,
M.
,
Kamyad
,
A.
, and
Farahi
,
M.
,
2009
, “
A Novel Algorithm for Solving Optimal Path Planning Problems Based on Parametrization Method and Fuzzy Aggregation
,”
Phys. Lett. A
,
373
(
38
), pp.
3439
3449
.
44.
Mineo
,
C.
,
Pierce
,
S. G.
,
Wright
,
B.
,
Nicholson
,
P. I.
, and
Cooper
,
I.
,
2015
, “
Robotic Path Planning for Non-destructive Testing of Complex Shaped Surfaces
,”
AIP Conference Proceedings
,
Minneapolis, MN
, pp.
1977
1987
.
45.
Jia
,
Y.-h.
, and
Mei
,
F.-x.
,
2002
, “
Simple Path Planning for Mobile Robots in the Present of Obstacles
,”
J.-Beijing Inst. Technol. English Edition
,
11
(
2; ISSU 32
), pp.
208
211
.
46.
Orozco-Rosas
,
U.
,
Montiel
,
O.
, and
Sepúlveda
,
R.
,
2019
, “
Mobile Robot Path Planning Using Membrane Evolutionary Artificial Potential Field
,”
Appl. Soft Comput.
,
77
(
1
), pp.
236
251
.
47.
Khatib
,
O.
,
1986
, “
Real-Time Obstacle Avoidance for Manipulators and Mobile Robots
,”
Int. J. Rob. Res.
,
5
(
1
), pp.
90
98
.
48.
Zhang
,
Z.
,
Chen
,
S.
,
Li
,
Y.
,
Wang
,
L.
,
Ren
,
R.
,
Xu
,
L.
,
Wang
,
J.
, and
Zhang
,
X.
,
2022
, “
Local Path Planning of Unmanned Underwater Vehicle Based on Improved APF and Rolling Window Method
,”
2022 International Conference on Cyber-physical Social Intelligence (ICCSI)
,
Nanjing, China
,
Nov. 18–21
, IEEE, pp.
542
549
.
49.
Imran
,
M.
, and
Kunwar
,
F.
,
2016
, “
A Hybrid Path Planning Technique Developed by Integrating Global and Local Path Planner
,”
2016 International Conference on Intelligent Systems Engineering (ICISE)
,
Los Angeles, CA
,
Apr. 20–22
, IEEE, pp.
118
122
.
50.
Ji
,
Y.
,
Ni
,
L.
,
Zhao
,
C.
,
Lei
,
C.
,
Du
,
Y.
, and
Wang
,
W.
,
2023
, “
Tripfield: A 3d Potential Field Model and Its Applications to Local Path Planning of Autonomous Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
,
24
(
3
), pp.
3541
3554
.
51.
Ragavan
,
S. V.
,
Ponnambalam
,
S.
, and
Sumero
,
C.
,
2011
, “
Waypoint-Based Path Planner for Mobile Robot Navigation Using PSO and Ga-ais
,”
2011 IEEE Recent Advances in Intelligent Computational Systems
,
Trivandrum, India
,
Sept. 22–24
, IEEE, pp.
756
760
.
52.
Warren
,
C. W.
,
1989
, “
Global Path Planning Using Artificial Potential Fields
,”
1989 IEEE International Conference on Robotics and Automation
,
Scottsdale, AZ
,
May 14–19
, pp.
7316
7317
.
53.
Barraquand
,
J.
,
Langlois
,
B.
, and
Latombe
,
J.-C.
,
1992
, “
Numerical Potential Field Techniques for Robot Path Planning
,”
IEEE Trans. Syst. Man Cybern.
,
22
(
2
), pp.
224
241
.
54.
Hwang
,
Y. K.
, and
Ahuja
,
N.
,
1992
, “
A Potential Field Approach to Path Planning
,”
IEEE Trans. Rob. Autom.
,
8
(
1
), pp.
23
32
.
55.
Raja
,
P.
, and
Pugazhenthi
,
S.
,
2012
, “
Optimal Path Planning of Mobile Robots: A Review
,”
Int. J. Phys. Sci.
,
7
(
9
), pp.
1314
1320
.
56.
Elfes
,
A.
,
1989
, “
Using Occupancy Grids for Mobile Robot Perception and Navigation
,”
Computer
,
22
(
6
), pp.
46
57
.
57.
Collins
,
T.
, and
Collins
,
J.
,
2007
, “
Occupancy Grid Mapping: An Empirical Evaluation
,”
2007 Mediterranean Conference on Control & Automation
,
Athens, Greece
, IEEE, pp.
1
6
.
58.
Konolige
,
K.
,
Agrawal
,
M.
,
Blas
,
M. R.
,
Bolles
,
R. C.
,
Gerkey
,
B.
,
Sola
,
J.
, and
Sundaresan
,
A.
,
2009
, “
Mapping, Navigation, and Learning for Off-Road Traversal
,”
J. Field Rob.
,
26
(
1
), pp.
88
113
.
59.
Goodin
,
C.
,
Dabbiru
,
L.
,
Hudson
,
C.
,
Mason
,
G.
,
Carruth
,
D.
, and
Doude
,
M.
,
2021
, “
Fast Terrain Traversability Estimation With Terrestrial Lidar in Off-Road Autonomous Navigation
,”
SPIE DCS
,
Orlando, FL
, pp.
189
199
.
60.
Carruth
,
D.
,
Goodin
,
C.
,
Dabbiru
,
L.
,
Scherer
,
N.
, and
Jayakumar
,
P.
,
2020
, “
Predicting Error Propagation in Autonomous Ground Vehicle Subsystems
,”
Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
,
Novi, MI
, pp.
11
13
.
61.
Aust
,
S.
,
Prasad
,
R. V.
, and
Niemegeers
,
I. G.
,
2015
, “
Outdoor Long-Range Wlans: A Lesson for IEEE 802.11 Ah
,”
IEEE Commun. Surv. Tutorials
,
17
(
3
), pp.
1761
1775
.
62.
Maruyama
,
Y.
,
Kato
,
S.
, and
Azumi
,
T.
,
2016
, “
Exploring the Performance of ROS2
,”
Proceedings of the 13th International Conference on Embedded Software
,
Pittsburgh, PA
, pp.
1
10
.
63.
Hu
,
X.
,
Chen
,
L.
,
Tang
,
B.
,
Cao
,
D.
, and
He
,
H.
,
2018
, “
Dynamic Path Planning for Autonomous Driving on Various Roads With Avoidance of Static and Moving Obstacles
,”
Mech. Syst. Signal Process.
,
100
(
1
), pp.
482
500
.
64.
Coulter
,
R. C.
,
1992
, “
Implementation of the Pure Pursuit Path Tracking Algorithm
,”
Tech. Rep., Carnegie-Mellon UNIV Pittsburgh PA Robotics INST.
65.
Goodin
,
C.
,
Carruth
,
D. W.
,
Dabbiru
,
L.
,
Hudson
,
C. H.
,
Cagle
,
L. D.
,
Scherrer
,
N.
,
Moore
,
M. N.
, and
Jayakumar
,
P.
,
2022
, “
Simulation-Based Testing of Autonomous Ground Vehicles
,”
Autonomous Systems: Sensors, Processing and Security for Ground, Air, Sea and Space Vehicles and Infrastructure 2022
,
Orlando, FL
, Vol. 12115, SPIE, pp.
167
174
.
66.
Zhou
,
T.
,
Sharif
,
H.
,
Hempel
,
M.
,
Mahasukhon
,
P.
,
Wang
,
W.
, and
Ma
,
T.
,
2009
, “
A Deterministic Approach to Evaluate Path Loss Exponents in Large-Scale Outdoor 802.11 Wlans
,”
2009 IEEE 34th Conference on Local Computer Networks
,
Zurich, Switzerland
, Oct. 20–23, IEEE, pp.
348
351
.
67.
Atyabi
,
A.
,
Anderson
,
T. A.
,
Treharne
,
K.
, and
Powers
,
D. M.
,
2010
, “
Magician Simulator
,”
ICARV
,
Singapore
.
68.
Dantuluri
,
N. A. V.
, and
Pisu
,
P.
,
2021
, “
Safety Diagnostics and Degraded Operational Modes for Off-Road Unmanned Ground Combat Vehicles
,”
Annual Conference of the PHM Society
,
Nashville, TN
.
69.
Meadows
,
W.
,
Hudson
,
C.
,
Goodin
,
C.
,
Dabbiru
,
L.
,
Powell
,
B.
,
Doude
,
M.
,
Carruth
,
D.
,
Islam
,
M.
,
Ball
,
J. E.
, and
Tang
,
B.
,
2019
, “
Multi-Lidar Placement, Calibration, Co-Registration, and Processing on a Subaru Forester for Off-Road Autonomous Vehicles Operations
,”
Autonomous Systems: Sensors, Processing, and Security for Vehicles and Infrastructure 2019
,
Orlando, FL
.
70.
Hudson
,
C. R.
,
2022
,
The Effects of Ecological Simulation for Ground Vehicle Mobility Forecasting
,
Mississippi State University
,
Starkville, MS
.
71.
Hudson
,
C. R.
,
Deb
,
S.
,
Goodin
,
C.
, and
Carruth
,
D. W.
,
2020
, “
Using VR Generated Pedestrian Behaviors in Autonomous Vehicle Simulations
,”
Advances in Human Factors and Systems Interaction: Proceedings of the AHFE 2020 Virtual Conference on Human Factors and Systems Interaction
,
San Diego, CA
,
July 16–20
, Springer, pp.
303
308
.
72.
Goodin
,
C.
,
Doude
,
M.
,
Hudson
,
C.
, and
Carruth
,
D.
,
2018
, “
Enabling Off-Road Autonomous Navigation-Simulation of Lidar in Dense Vegetation
,”
Electronics
,
7
(
9
), p.
154
.
73.
Goodin
,
C.
,
Carruth
,
D.
,
Doude
,
M.
, and
Hudson
,
C.
,
2019
, “
Predicting the Influence of Rain on Lidar in Adas
,”
Electronics
,
8
(
1
), p.
89
.
74.
Goodin
,
C.
,
Sharma
,
S.
,
Doude
,
M.
,
Carruth
,
D.
,
Dabbiru
,
L.
, and
Hudson
,
C.
,
2019
, “
Training of Neural Networks With Automated Labeling of Simulated Sensor Data
,”
Tech. Rep., SAE Technical Paper.
75.
Boone
,
J.
,
Goodin
,
C.
,
Dabbiru
,
L.
,
Hudson
,
C.
,
Cagle
,
L.
, and
Carruth
,
D.
,
2022
, “
Training Artificial Intelligence Algorithms With Automatically Labelled UAV Data From Physics-Based Simulation Software
,”
Appl. Sci.
,
13
(
1
), p.
131
.
76.
Dabbiru
,
L.
,
Goodin
,
C.
,
Scherrer
,
N.
, and
Carruth
,
D.
,
2020
, “
Lidar Data Segmentation in Off-Road Environment Using Convolutional Neural Networks (CNN)
,”
SAE Int. J. Adv. Curr. Pract. Mob.
,
2
(
6
), pp.
3288
3292
.
You do not currently have access to this content.