A model for the coupled problem of wall deformation and fluid flow, based on thin-shell and lubrication theories, and driven by a propagating wave of smooth muscle activation, is proposed for peristaltic pumping in the ureter. The model makes use of the available experimental data on the mechanical properties of smooth muscle and accounts for the soft material between the muscle layer and the vessel lumen. The main input is the activation wave of muscular contraction. Equations for the time-dependent problem in tubes of arbitrary length are derived and applied to the particular case of periodic activation waves in an infinite tube. Mathematical (small amplitude) and numerical analyses of this case are presented. Predictions on phase-lag in wall constriction with respect to peak activation wave, lumen occlusion due to thickening lumen material with contracting smooth muscle, and the general bolus shape are in qualitative agreement with observation. Some modifications to the mechanical, elastic, and hydrodynamic properties of the ureter that will make peristalsis less efficient, due for example to disease, are identified. In particular, the flow rate-pressure rise relationship is linear for weak to moderate activation waves, but as the lumen is squeezed shut, it is seen to be nonlinear in a way that increases pumping efficiency. In every case a ureter whose lumen can theoretically be squeezed shut is the one for which pumping is most efficient.

1.
Aberg
A. K. G.
, and
Axelsson
J.
, “
Some Mechanical Aspects of an Intestinal Smooth Muscle
,”
Acta Physiol. Scand.
, Vol.
64
,
1965
, pp.
15
27
.
2.
Axelsson, J., “Mechanical Properties of Smooth Muscle, and the Relationship Between Mechanical and Electrical Activity,” in: Bulbring, E., et al., eds., Smooth Muscle, Arnold, 1970, pp. 94–128.
3.
Bertuzzi
A.
, and
Salinari
S.
, et al., “
Peristaltic Transport of a Solid Bolus
,”
J. Biomechanics
, Vol.
16
, No.
7
,
1983
, pp.
459
464
.
4.
Bohme
G. B.
, and
Friedrich
R.
, “
Peristaltic Flow of Viscoelastic Liquids
,”
J. Fluid Mech.
, Vol.
128
,
1983
, pp.
109
122
.
5.
Boyarsky, S., and Labay, P. C., “Ureteral Dimensions and Specifications for Bioengineering Modeling,” in: Boyarsky, S., et al., eds., Urodynamics: Hydrodynamics of the Ureter and Renal Pelvis, Academic Press, 1971, pp. 163–165.
6.
Brasseur
J. G.
,
Corrsin
S.
, and
Lu
N. Q.
, “
The Influence of a Peripheral Layer of Different Viscosity on Peristaltic Pumping With Newtonian Fluid
,”
J. Fluid Mech.
, Vol.
174
,
1987
, pp.
495
519
.
7.
Fung, Y.-C., “Peristaltic Pumping: A Bioengineering Model,” in: Boyarsky, S., et al., eds., Urodynamics: Hydrodynamics of the Ureter and Renal Pelvis, Academic Press, 1971, pp. 177–198.
8.
Fung, Y.-C., Biomechanics: Mechanical Properties of Living Tissues, 2nd ed., Springer-Verlag, New York, 1993.
9.
Fung
Y.-C.
, and
Yih
C. S.
, “
Peristaltic Transport
,”
J. Appl. Mech.
, Vol.
35
,
1968
, pp.
669
675
.
10.
Gerlach, R., “Harnleiterdynamik and Hamleiterersatz,” Thesis RWTH Aachen, Forschung and Lehre, Schriftenreihe Medizin, Vol. II, J. Stippak, Aachen, 1980.
11.
Griffiths
D. J.
, “
Flow of Urine Through the Ureter: a Collapsible, Muscular Tube Undergoing Peristalsis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
111
,
1989
, pp.
206
211
.
12.
Jaffrin
M. Y.
, and
Shapiro
A. H.
, “
Peristaltic Pumping
,”
Annu. Rev. Fluid Mech.
, Vol.
3
,
1971
, pp.
13
37
.
13.
Krauss, H., Thin Elastic Shells, Wiley, New York, 1967.
14.
Kubicek, M., and Hlavacek, V., Numerical Solution of Nonlinear Boundary Value Problems With Applications, Prentice Hall, New York, 1983.
15.
Li
M.
, and
Brasseur
J. G.
, “
Nonsteady Peristaltic Transport in Finite Length Tubes
,”
J. Fluid Mech.
, Vol.
248
,
1993
, pp.
129
151
.
16.
Lykoudis
P. S.
, and
Roos
R.
, “
The Fluid Mechanics of the Ureter From a Lubrication Theory Point of View
,”
J. Fluid Mech.
, Vol.
43
,
1970
, pp.
661
674
.
17.
McMahon, T. A., Muscles, Reflexes, and Locomotion, Princeton University Press, 1984.
18.
Miftakhov, R., and D’souza, F. S., “Dynamics of Urine Flow in an Active Ureter,” presented at SEB Symposium, University of Leeds, 4–9 July, 1994.
19.
Miftakhov
R.
, and
Wingate
D.
, “
Numerical Simulation of the Peristaltic Reflex of the Small Bowel
,”
Biorheology
, Vol.
31
, No.
4
,
1994
, pp.
309
325
.
20.
Mittra
T. K.
, and
Prasad
S. N.
, “
On the Influence of Wall Properties and Poiseuille Flow in Peristalsis
,”
J. Biomechanics
, Vol.
6
,
1973
, pp.
681
693
.
21.
Ohlson
L.
, “
Morphological Dynamics of Ureteral Transport. I Shape and Volume of Constituent Urine Fractions, II Peristaltic Patterns in Relation to Flowrate
,”
Am. J. Physiol.
, Vol.
256
,
1989
, pp.
19
34
.
22.
Rath
H. J.
, “
Peristaltic Flow Through a Lobe-Shaped Tube
,”
Int. J. Mech. Eng. Sci.
, Vol.
24
,
1982
, pp.
359
367
.
23.
Shapiro
A. H.
,
Jaffrin
M. Y.
, and
Weinberg
S. L.
, “
Peristaltic Pumping With Long Wavelengths at Low Reynolds Number
,”
J. Fluid Mech.
, Vol.
37
,
1969
, pp.
799
825
.
24.
Takabatake
S.
, and
Ayukawa
K.
, “
Numerical Studies of Two Dimensional Peristaltic Flows
,”
J. Fluid Mech.
, Vol.
122
,
1982
, pp.
439
465
.
25.
Takabatake
S.
,
Ayukawa
K.
, and
Mori
A.
, “
Peristaltic Pumping in Circular Cylindrical Tubes: A Numerical Study of Fluid Transport and Its Efficiency
,”
J. Fluid Mech.
, Vol.
193
,
1988
, pp.
267
283
.
26.
Tanagho, E. A., and Meyers, F. H., “Ureteral Peristaltic Activity,” in: Boyarsky, S., et al., eds., Urodynamics: Hydrodynamics of the Ureter and Renal Pelvis, Academic Press, 1971, pp. 119–124.
27.
Wang
J.
,
He
J.
, and
Stephens
N. L.
, “
A Modified Force-Velocity Equation for Smooth Muscle Contraction
,”
J. Appl. Physiology
, Vol.
76
, No.
1
,
1994
, pp.
253
258
.
28.
Weiss, R. M., “Physiology and Pharmacology of the Renal Pelvis and Ureter,” in: Walsh, P. C., et al., eds., Campbell’s Urology, Vol. 1, W. B. Saunders Co., 5th ed., 1986, pp. 94–128.
29.
Woodburne
R. T.
, and
Lapides
J.
, “
The Ureteral Lumen During Peristalsis
,”
Am. J. Anatomy
, Vol.
133
,
1972
, pp.
255
258
.
30.
Yih
C. S.
, and
Fung
Y.-C.
, “
Peristaltic Waves in Circular Cylindrical Tubes
,”
J. Appl. Mech.
, Vol.
36
,
1969
, pp.
579
587
.
31.
Yin
F. C. P.
, and
Fung
Y.-C.
, “
Mechanical Properties of Isolated Mammalian Ureteral Segments
,”
American J. Physiology
, Vol.
221
, No.
5
,
1971
, pp.
1484
1493
.
32.
Zien
T.-F.
, and
Ostrach
S.
, “
A Long Wave Approximation to Peristaltic Motion
,”
J. Biomechanics
, Vol.
3
,
1970
, pp.
63
75
.
33.
Zupkas
P. F.
, and
Fung
Y.-C.
, “
Active Contractions of Ureteral Segments
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
107
,
1985
, pp.
62
65
.
This content is only available via PDF.
You do not currently have access to this content.